Luister en lees nu 45 dagen gratis

Unieke aanbieding: ontdek Storytel nu 45 dagen gratis. Meer dan 1 miljoen luisterboeken en ebooks in één app.

  • Switch makkelijk tussen luisteren en lezen
  • Elke week honderden nieuwe verhalen
  • Voor ieder een passend abonnement
  • Opzeggen wanneer je maar wilt
Probeer 45 dagen gratis
BE - Details page - Device banner - 894x1036
Cover for Math for Machine Learning: Linear Algebra, Calculus, and Probability Explained

Math for Machine Learning: Linear Algebra, Calculus, and Probability Explained

Taal
Engels
Formaat
Categorie

Non-fictie

Master the Mathematical Foundation Every Machine Learning Engineer Needs

Are you implementing machine learning algorithms without truly understanding the mathematical principles that power them? Do complex ML concepts feel like black boxes because you lack the mathematical foundation to see inside them? This comprehensive guide bridges the gap between mathematical theory and practical machine learning applications.

Math for Machine Learning: Linear Algebra, Calculus, and Probability Explained transforms abstract mathematical concepts into clear, actionable knowledge that will elevate your machine learning expertise. Unlike dry academic textbooks, this book connects every mathematical concept directly to real-world ML applications, showing you not just how the math works, but why it's essential for machine learning success.

What You'll Master:

Linear Algebra Foundations:

Vectors and matrices as the language of data manipulation

Eigenvalues and eigenvectors for dimensionality reduction

Singular Value Decomposition (SVD) for recommendation systems

Matrix transformations that power neural networks

Calculus for Optimization:

Derivatives and gradients that enable machine learning

Multivariable calculus for complex model optimization

Mathematical optimization techniques used in gradient descent

Partial derivatives for understanding parameter updates

Probability and Statistics:

Probability distributions underlying ML algorithms

Statistical inference for model validation

Expectation and variance for uncertainty quantification

Bayesian thinking for probabilistic machine learning

Applied Mathematical Concepts:

The mathematics behind linear and logistic regression

Neural network backpropagation from first principles

Principal Component Analysis (PCA) mathematical foundations

Optimization algorithms that make learning possible

Why This Book Is Different:

Every mathematical concept is immediately connected to practical machine learning applications. You'll see how vector operations power recommendation engines, how derivatives drive optimization algorithms, and how probability distributions enable uncertainty quantification. The book includes Python implementations using NumPy, SciPy, and scikit-learn, so you can immediately apply what you learn.

Perfect for:

Software engineers transitioning to machine learning

Data science students seeking mathematical clarity

Anyone implementing algorithms without mathematical confidence

Progressive Learning Structure:

Starting with mathematical fundamentals, the book builds systematically through linear algebra, calculus, and probability. Each chapter includes visual explanations, practical examples, and Python code implementations. You'll progress from basic vector operations to understanding the complete mathematical framework behind neural networks.

The final chapters demonstrate how these mathematical concepts unite in real ML algorithms, with hands-on mini-projects that reinforce your learning. Comprehensive appendices provide quick reference materials and Python cheat sheets for ongoing use.

No Advanced Prerequisites Required:

Written for practitioners, not mathematicians. If you can program and aren't afraid of mathematical concepts, you're ready to begin. Complex ideas are broken down into digestible explanations with plenty of visual aids and practical examples.

Start building unshakeable mathematical confidence in machine learning today.

© 2025 Dargslan s.r.o. (Ebook): 6610001067571

Verschijnt op:

Ebook: 30 september 2025

Maak je keuze:

  • Voor ieder een passend abonnement

  • Kies het aantal uur en accounts dat bij jou past

  • Download verhalen voor offline toegang

  • Kids Mode - een veilige omgeving voor kinderen

Meest gekozen

Unlimited

Voor wie onbeperkt wil luisteren en lezen.

€13.99 /30 dagen

14 dagen gratis
  • Meer dan 1 miljoen luisterboeken en ebooks

  • Altijd opzegbaar

Probeer 45 dagen gratis

Premium

Voor wie zo nu en dan wil luisteren en lezen.

€9.99 /30 dagen

14 dagen gratis
  • Meer dan 1 miljoen luisterboeken en ebooks

  • Altijd opzegbaar

Probeer 7 dagen gratis

Flex

Voor wie Storytel wil proberen.

€7.99 /30 dagen

  • Spaar ongebruikte uren op tot 50 uur

  • Meer dan 1 miljoen luisterboeken en ebooks

  • Altijd opzegbaar

Begin nu

Family

Voor wie verhalen met familie en vrienden wil delen.

Vanaf €18.99 /maand

14 dagen gratis
  • Meer dan 1 miljoen luisterboeken en ebooks

  • Altijd opzegbaar

Jij + 1 familielid2 accounts

€18.99 /30 dagen

Probeer 14 dagen gratis