Luister en lees nu 14 dagen gratis

Ontdek Storytel nu 14 dagen gratis. Meer dan 1 miljoen luisterboeken en ebooks in één app.

  • Switch makkelijk tussen luisteren en lezen
  • Elke week honderden nieuwe verhalen
  • Voor ieder een passend abonnement
  • Opzeggen wanneer je maar wilt
Probeer 14 dagen gratis
BE - Details page - Device banner - 894x1036
Cover for Practical Data Science Environments with Python and R

Practical Data Science Environments with Python and R

Taal
Engels
Formaat
Categorie

Non-fictie

From Beginner to Practitioner: A Practical Path to Learning Data Science

Key Features

? Build production-ready data science environments from scratch.

? Learn Python and R through complete, real-world workflows for cleaning, visualizing, and modeling data.

? Learn real-world and practical workflows used by modern data organizations.

Book Description

Data science often fails beginners not because of complex algorithms, but because setting up the right tools, environments, and workflows is confusing and poorly explained. Practical Data Science Environments with Python and R fills that gap by focusing on the practical foundations required to work effectively in real data science settings.

You begin by developing a clear understanding of the data science landscape, including how different programming languages, tools, and platforms are used across analytics and machine learning workflows. As you advance, you learn how to import structured and unstructured data, apply systematic cleaning and transformation techniques, and perform exploratory analysis to understand data behavior.

You will implement and evaluate foundational models while learning how to organize code, manage versions with Git, and follow workflows used in professional data teams. The final chapters connect these skills to industry use cases, advanced topics, and next steps, preparing you to continue growing beyond the basics.

What you will learn

? Build complete, reproducible data science environments from scratch.

? Prepare raw data through structured cleaning and transformation processes.

? Apply Python and R workflows for end-to-end data analysis tasks.

? Visualize data to identify patterns and communicate analytical insights.

? Implement and evaluate foundational machine learning models.

? Manage data science projects using industry-standard version control workflows.

Table of Contents

1. An Overview of Data Science

2. Comparing Programming Languages and Various Environments

3. Setting Up Data Science Environment

4. Importing and Cleaning Data in Python and R

5. Data Wrangling and Manipulation in Python and R

6. Data Visualization in Python and R

7. Introduction to Data Science Algorithms

8. Implementing Machine Learning Models

9. Version Control with Git

10. Data Science and Analytics in Industry

11. Advanced Topics and Next Steps

Index

© 2026 Orange Education Pvt Ltd (Ebook): 9789349887558

Verschijnt op:

Ebook: 30 januari 2026

Anderen genoten ook van...

Maak je keuze:

  • Voor ieder een passend abonnement

  • Kies het aantal uur en accounts dat bij jou past

  • Download verhalen voor offline toegang

  • Kids Mode - een veilige omgeving voor kinderen

Meest gekozen

Unlimited

Voor wie onbeperkt wil luisteren en lezen.

€13.99 /30 dagen

  • Meer dan 1 miljoen luisterboeken en ebooks

  • Altijd opzegbaar

Probeer 14 dagen gratis

Premium

Voor wie zo nu en dan wil luisteren en lezen.

€9.99 /30 dagen

  • Meer dan 1 miljoen luisterboeken en ebooks

  • Altijd opzegbaar

Probeer 7 dagen gratis

Flex

Voor wie Storytel wil proberen.

€7.99 /30 dagen

  • Spaar ongebruikte uren op tot 50 uur

  • Meer dan 1 miljoen luisterboeken en ebooks

  • Altijd opzegbaar

Begin nu

Family

Voor wie verhalen met familie en vrienden wil delen.

Vanaf €18.99 /maand

  • Meer dan 1 miljoen luisterboeken en ebooks

  • Altijd opzegbaar

Jij + 1 familielid2 accounts

€18.99 /30 dagen

Probeer 14 dagen gratis