#100 Embedded Machine Learning on Edge Devices

#100 Embedded Machine Learning on Edge Devices

0 Calificaciones
0
Episodio
86 of 361
Duración
51min
Idioma
Inglés
Formato
Categoría
Economía y negocios

Machine learning models are often thought to be mainly utilized by large tech companies that run large and powerful models to accomplish a wide array of tasks. However, machine learning models are finding an increasing presence in edge devices such as smart watches.

ML engineers are learning how to compress models and fit them into smaller and smaller devices while retaining accuracy, effectiveness, and efficiency. The goal is to empower domain experts in any industry around the world to effectively use machine learning models without having to become experts in the field themselves.

Daniel Situnayake is the Founding TinyML Engineer and Head of Machine Learning at Edge Impulse, a leading development platform for embedded machine learning used by over 3,000 enterprises across more than 85,000 ML projects globally. Dan has over 10 years of experience as a software engineer, which includes companies like Google (where he worked on TensorFlow Lite) and Loopt, and co-founded Tiny Farms America’s first insect farming technology company. He wrote the book, "TinyML," and the forthcoming "AI at the Edge".

Daniel joins the show to talk about his work with EdgeML, the biggest challenges facing the field of embedded machine learning, the potential use cases of machine learning models in edge devices, and the best tips for aspiring machine learning engineers and data science practitioners to get started with embedded machine learning.


Escucha y lee

Descubre un mundo infinito de historias

  • Lee y escucha todo lo que quieras
  • Más de 1 millón de títulos
  • Títulos exclusivos + Storytel Originals
  • Precio regular: CLP 7,990 al mes
  • Cancela cuando quieras
Suscríbete ahora
Copy of Device Banner Block 894x1036 3
Cover for #100 Embedded Machine Learning on Edge Devices

Otros podcasts que te pueden gustar...