Escucha y lee

Descubre un mundo infinito de historias

  • Lee y escucha todo lo que quieras
  • Más de 1 millón de títulos
  • Títulos exclusivos + Storytel Originals
  • Cancela cuando quieras
Suscríbete ahora
Copy of Device Banner Block 894x1036 3
Cover for Bootstrapping Language-Image Pretraining: The Complete Guide for Developers and Engineers

Bootstrapping Language-Image Pretraining: The Complete Guide for Developers and Engineers

Idioma
Inglés
Formato
Categoría

No ficción

"Bootstrapping Language-Image Pretraining"

"Bootstrapping Language-Image Pretraining" is a comprehensive guide to the cutting-edge field of multimodal AI, offering an in-depth exploration of how models learn from both language and visual data. The book begins with a strong conceptual foundation, delving into the key principles that distinguish multimodal pretraining from traditional, unimodal approaches. It offers a rigorous examination of joint representation learning, architectural paradigms—such as alignment versus fusion—and the critical bottlenecks that underpin robust vision-language models. Readers are introduced to influential early models, benchmark datasets, and the practical challenges involved in handling rich, heterogeneous data.

In subsequent chapters, the book surveys the architectural building blocks powering today’s most advanced systems, from vision and text encoders to sophisticated cross-modal attention mechanisms and scalable fusion strategies. Detailed attention is given to the principles and practices of self-supervised learning and bootstrapping, including innovative data augmentation techniques, curriculum learning, and mechanism for leveraging weak supervision at scale. Methods for contrastive and generative pretraining are thoroughly analyzed, along with the multi-objective loss functions and large-scale distributed optimization that enable modern models to learn rich and transferable representations from massive, noisy datasets.

Recognizing the real-world impact of such technologies, the volume dedicates essential chapters to the responsible deployment of multimodal AI. It presents practical strategies to mitigate bias, bolster model robustness, and promote transparency and fairness across modalities. The book closes with an authoritative survey of evaluation protocols and emerging research frontiers, including instruction tuning, multilingual pretraining, and privacy-preserving approaches. "Bootstrapping Language-Image Pretraining" serves as an essential resource for researchers and practitioners seeking both a foundational understanding and a forward-looking roadmap in the pursuit of next-generation vision-language intelligence.

© 2025 HiTeX Press (Ebook): 6610000964604

Fecha de lanzamiento

Ebook: 11 de julio de 2025

Etiquetas

    Explora nuevos mundos

    • Más de 1 millón de títulos

    • Modo sin conexión

    • Kids Mode

    • Cancela en cualquier momento

    ¡Oferta de lanzamiento!
    Hasta agotar existencias

    Unlimited

    Escucha y lee sin límites.

    CLP 7990 /mes
    • 1 cuenta

    • Acceso ilimitado

    • Escucha y lee los títulos que quieras

    • Modo sin conexión + Kids Mode

    • Cancela en cualquier momento

    Pruébalo ahora