Escucha y lee

Descubre un mundo infinito de historias

  • Lee y escucha todo lo que quieras
  • Más de 1 millón de títulos
  • Títulos exclusivos + Storytel Originals
  • Precio regular: CLP 7,990 al mes
  • Cancela cuando quieras
Suscríbete ahora
Copy of Device Banner Block 894x1036 3
Cover for Few-Shot Machine Learning: Doing More with Less Data

Few-Shot Machine Learning: Doing More with Less Data

Idioma
Inglés
Formato
Categoría

No ficción

"Few-Shot Machine Learning: Doing More with Less Data" is an illuminating exploration into the cutting-edge techniques that enable machines to learn efficiently from limited data. This book delves deep into the domain of few-shot learning—a revolutionary approach that challenges the traditional dependency on vast datasets. By uncovering the principles and practices that allow models to generalize from minimal examples, it empowers readers to harness the power of artificial intelligence in resource-constrained environments.

Carefully structured to provide both theoretical insights and practical guidance, the book navigates through essential paradigms such as meta-learning, transfer learning, and innovative data augmentation strategies. It emphasizes the building blocks needed to understand and apply few-shot learning across various domains, from healthcare diagnostics to real-time analytics. Through real-world applications and case studies, the text not only illustrates the transformative potential of few-shot learning but also prepares practitioners to address prevalent challenges and seize future opportunities in this dynamic field.

"Few-Shot Machine Learning: Doing More with Less Data" serves as an indispensable resource for beginners and experienced professionals alike, offering a comprehensive guide to leveraging advanced machine learning techniques. By presenting complex concepts in an accessible manner, it opens new pathways for creativity and innovation in artificial intelligence, making it an essential companion for anyone interested in the future of machine learning and data science.

© 2024 HiTeX Press (Libro electrónico): 6610000663163

Fecha de lanzamiento

Libro electrónico: 27 de octubre de 2024

Etiquetas

    Prueba 7 días gratis

    • Más de 1 millón de títulos

    • Modo sin conexión

    • Kids Mode

    • Cancela en cualquier momento

    Unlimited

    Escucha y lee sin límites.

    CLP 7990 /mes

    • Escucha y lee los títulos que quieras

    • Modo sin conexión + Kids Mode

    • Cancela en cualquier momento

    Suscríbete ahora