Escucha y lee

Descubre un mundo infinito de historias

  • Lee y escucha todo lo que quieras
  • Más de 1 millón de títulos
  • Títulos exclusivos + Storytel Originals
  • Precio regular: CLP 7,990 al mes
  • Cancela cuando quieras
Suscríbete ahora
Copy of Device Banner Block 894x1036 3
Cover for Tree-Based Machine Learning Methods in SAS Viya

Tree-Based Machine Learning Methods in SAS Viya

Idioma
Inglés
Formato
Categoría

No ficción

Discover how to build decision trees using SAS Viya!

Tree-Based Machine Learning Methods in SAS Viya covers everything from using a single tree to more advanced bagging and boosting ensemble methods. The book includes discussions of tree-structured predictive models and the methodology for growing, pruning, and assessing decision trees, forests, and gradient boosted trees. Each chapter introduces a new data concern and then walks you through tweaking the modeling approach, modifying the properties, and changing the hyperparameters, thus building an effective tree-based machine learning model. Along the way, you will gain experience making decision trees, forests, and gradient boosted trees that work for you.

By the end of this book, you will know how to:

• build tree-structured models, including classification trees and regression trees. • build tree-based ensemble models, including forest and gradient boosting. • run isolation forest and Poisson and Tweedy gradient boosted regression tree models. • implement open source in SAS and SAS in open source. • use decision trees for exploratory data analysis, dimension reduction, and missing value imputation.

© 2022 SAS Institute (Libro electrónico): 9781954846654

Fecha de lanzamiento

Libro electrónico: 21 de febrero de 2022

Explora nuevos mundos

  • Más de 1 millón de títulos

  • Modo sin conexión

  • Kids Mode

  • Cancela en cualquier momento

Más popular

Unlimited

Escucha y lee sin límites.

CLP 7990 /mes

  • Escucha y lee los títulos que quieras

  • Modo sin conexión + Kids Mode

  • Cancela en cualquier momento

Suscríbete ahora.