Large models on CPUs

Large models on CPUs

0 Calificaciones
0
Episodio
223 of 337
Duración
38min
Idioma
Inglés
Formato
Categoría
No ficción

Model sizes are crazy these days with billions and billions of parameters. As Mark Kurtz explains in this episode, this makes inference slow and expensive despite the fact that up to 90%+ of the parameters don’t influence the outputs at all.

Mark helps us understand all of the practicalities and progress that is being made in model optimization and CPU inference, including the increasing opportunities to run LLMs and other Generative AI models on commodity hardware.

Join the discussion

Changelog++ members save 1 minute on this episode because they made the ads disappear. Join today!

Sponsors:

Fastly • – Our bandwidth partner. • Fastly powers fast, secure, and scalable digital experiences. Move beyond your content delivery network to their powerful edge cloud platform. Learn more at fastly.comFly.io • – The home of Changelog.com • — Deploy your apps and databases close to your users. In minutes you can run your Ruby, Go, Node, Deno, Python, or Elixir app (and databases!) all over the world. No ops required. Learn more at fly.io/changelog • and check out the speedrun in their docs • .

Featuring:

• Mark Kurtz – LinkedIn • , X • Daniel Whitenack – Website • , GitHub • , X Show Notes:

Neural MagicSparseMLSparseZooNeural Magic Scales up MLPerf™ Inference v3.0 Performance With Demonstrated Power Efficiency; No GPUs NeededDeploy Optimized Hugging Face Models With DeepSparse and SparseZooSparseGPT: Remove 100 Billion Parameters for Free Something missing or broken? PRs welcome!


Escucha y lee

Descubre un mundo infinito de historias

  • Lee y escucha todo lo que quieras
  • Más de 1 millón de títulos
  • Títulos exclusivos + Storytel Originals
  • Precio regular: CLP 7,990 al mes
  • Cancela cuando quieras
Suscríbete ahora
Copy of Device Banner Block 894x1036 3
Cover for Large models on CPUs

Otros podcasts que te pueden gustar...