Ep. 27 - Big Algo, Fat Tails, and Converging Priors

Ep. 27 - Big Algo, Fat Tails, and Converging Priors

0 Calificaciones
0
Episodio
28 of 330
Duración
49min
Idioma
Inglés
Formato
Categoría
No ficción

Today we dive into the current Bayesian flame wars on Twitter. Do Bayesian priors converge? As Nassim Taleb (@nntaleb) points out, not necessarily until a fat tail or power law distribution. We'll talk about what that means, and the wonders worked by Bayes rule even under some seemingly preposterous priors.

Also - the military wants to do machine learning with less data. Is the era of big data over and giving way to the era of the big algorithm? The results of the Twitter Shadow Ban poll, QA bias, the Streisand effect and the Alex Jones banning

Get full access to The Local Maximum at localmaximum.substack.com/subscribe


Escucha y lee

Descubre un mundo infinito de historias

  • Lee y escucha todo lo que quieras
  • Más de 900,000 títulos
  • Títulos exclusivos + Storytel Originals
  • 7 días de prueba gratis, luego $169 MXN al mes
  • Cancela cuando quieras
Suscríbete ahora
Copy of Device Banner Block 894x1036 3
Cover for Ep. 27 - Big Algo, Fat Tails, and Converging Priors

Otros podcasts que te pueden gustar...