Escucha y lee

Descubre un mundo infinito de historias

  • Lee y escucha todo lo que quieras
  • Más de 1 millón de títulos
  • Títulos exclusivos + Storytel Originals
  • 7 días de prueba gratis, luego $169 MXN al mes
  • Cancela cuando quieras
Suscríbete ahora
Copy of Device Banner Block 894x1036 3
Cover for Applied Deep Learning for Natural Language Processing with AllenNLP: The Complete Guide for Developers and Engineers

Applied Deep Learning for Natural Language Processing with AllenNLP: The Complete Guide for Developers and Engineers

Idioma
Inglés
Formato
Categoría

No ficción

"Applied Deep Learning for Natural Language Processing with AllenNLP"

"Applied Deep Learning for Natural Language Processing with AllenNLP" is a comprehensive guide that brings together foundational deep learning concepts and practical implementations in the context of advanced NLP tasks. Beginning with the core principles of neural networks, sequence modeling, and representational learning, the book offers readers a deep-dive into both the theoretical underpinnings and applied methodologies behind state-of-the-art models such as transformers and contextual embeddings. The discussion extends to topics such as optimization, transfer learning, and robust evaluation, laying a solid groundwork for anyone seeking to build highly capable NLP systems.

Central to this book is a systematic exploration of the AllenNLP library—a leading open-source framework that enables rapid prototyping and scalable deployment of modern NLP models. Readers are guided through AllenNLP’s modular architecture, data abstraction layers, and experiment management features, gaining practical skills in structuring reproducible pipelines and extending the framework for custom research or enterprise solutions. The book addresses the entire model lifecycle, from dataset preparation and feature engineering to training, validation, deployment, and monitoring, ensuring a holistic perspective suitable for research and production environments alike.

A hallmark of this volume is its practical orientation: it features end-to-end tutorials for tasks ranging from sequence labeling and text classification to machine reading comprehension, question answering, structured prediction, and natural language generation. Specialized chapters address productionization—covering model export, scalable serving, containerization, and secure deployment—as well as best practices for experiment tracking, benchmarking, reproducibility, and ethical considerations. Concluding with insights into emerging research frontiers, including model compression, federated learning, and explainable AI, this book is an invaluable resource for engineers, data scientists, and researchers aiming to master the intersection of deep learning and natural language processing with AllenNLP.

© 2025 HiTeX Press (Ebook): 6610001018238

Fecha de lanzamiento

Ebook: 15 de agosto de 2025

Etiquetas

    Otros también disfrutaron...

    Explora nuevos mundos

    • Más de 1 millón de títulos

    • Modo sin conexión

    • Kids Mode

    • Cancela en cualquier momento

    Ilimitado Mensual

    Escucha y lee sin límites.

    $169 /mes

    • Escucha y lee los títulos que quieras

    • Modo sin conexión + Kids Mode

    • Cancela en cualquier momento

    Pruébalo ahora

    Ilimitado Anual

    Escucha y lee sin límites a un mejor precio.

    $1190 /año

    Ahorra 40%
    • Escucha y lee los títulos que quieras

    • Modo sin conexión + Kids Mode

    • Cancela en cualquier momento

    Pruébalo ahora
    ¡Más popular!

    Familiar

    Perfecto para compartir historias con toda la familia.

    Desde $259 /mes

    • Acceso a todo el catálogo

    • Modo sin conexión + Kids Mode

    • Cancela en cualquier momento

    Tú + 3 miembros de la familia4 cuentas

    $259 /mes

    Pruébalo ahora