Descubre un mundo infinito de historias
No ficción
In this book, you'll embark on a comprehensive journey through the fundamentals of linear algebra, a critical component for any aspiring machine learning expert. Starting with an introductory overview, the course explains why linear algebra is indispensable for machine learning, setting the stage for deeper exploration. You'll then dive into the concepts of vectors and matrices, understanding their definitions, properties, and practical applications in the field.
As you progress, the course takes a closer look at matrix decomposition, breaking down complex matrices into simpler, more manageable forms. This section emphasizes the importance of decomposition techniques in simplifying computations and enhancing data analysis. The final chapter focuses on principal component analysis, a powerful technique for dimensionality reduction that is widely used in machine learning and data science. By the end of the course, you will have a solid grasp of how PCA can be applied to streamline data and improve model performance.
This course is designed to provide technical professionals with a thorough understanding of linear algebra's role in machine learning. By the end, you'll be well-equipped with the knowledge and skills needed to apply linear algebra in practical machine learning scenarios.
© 2024 Packt Publishing (eBook): 9781836208945
Fecha de lanzamiento
eBook: 24 de mayo de 2024
Tags
Más de 900,000 títulos
Modo sin conexión
Kids Mode
Cancela en cualquier momento
Escucha y lee sin límites.
1 cuenta
Acceso ilimitado
Escucha y lee los títulos que quieras
Modo sin conexión + Kids Mode
Cancela en cualquier momento
Escucha y lee sin límites a un mejor precio.
1 cuenta
Acceso ilimitado
Escucha y lee los títulos que quieras
Modo sin conexión + Kids Mode
Cancela en cualquier momento
Perfecto para compartir historias con toda la familia.
4-6 cuentas
100 horas/mes para cada cuenta
Acceso a todo el catálogo
Modo sin conexión + Kids Mode
Cancela en cualquier momento
4 cuentas
$259 /mesEspañol
México