Escucha y lee

Descubre un mundo infinito de historias

  • Lee y escucha todo lo que quieras
  • Más de 1 millón de títulos
  • Títulos exclusivos + Storytel Originals
  • 7 días de prueba gratis, luego $169 MXN al mes
  • Cancela cuando quieras
Suscríbete ahora
Copy of Device Banner Block 894x1036 3
Cover for Hands-On One-shot Learning with Python: Learn to implement fast and accurate deep learning models with fewer training samples using PyTorch

Hands-On One-shot Learning with Python: Learn to implement fast and accurate deep learning models with fewer training samples using PyTorch

Idioma
Inglés
Formato
Categoría

No ficción

Get to grips with building powerful deep learning models using PyTorch and scikit-learn

Key Features

• Learn how you can speed up the deep learning process with one-shot learning

• Use Python and PyTorch to build state-of-the-art one-shot learning models

• Explore architectures such as Siamese networks, memory-augmented neural networks, model-agnostic meta-learning, and discriminative k-shot learning

Book Description

One-shot learning has been an active field of research for scientists trying to develop a cognitive machine that mimics human learning. With this book, you'll explore key approaches to one-shot learning, such as metrics-based, model-based, and optimization-based techniques, all with the help of practical examples.

Hands-On One-shot Learning with Python will guide you through the exploration and design of deep learning models that can obtain information about an object from one or just a few training samples. The book begins with an overview of deep learning and one-shot learning and then introduces you to the different methods you can use to achieve it, such as deep learning architectures and probabilistic models. Once you've got to grips with the core principles, you'll explore real-world examples and implementations of one-shot learning using PyTorch 1.x on datasets such as Omniglot and MiniImageNet. Finally, you'll explore generative modeling-based methods and discover the key considerations for building systems that exhibit human-level intelligence.

By the end of this book, you'll be well-versed with the different one- and few-shot learning methods and be able to use them to build your own deep learning models.

What you will learn

• Get to grips with the fundamental concepts of one- and few-shot learning

• Work with different deep learning architectures for one-shot learning

• Understand when to use one-shot and transfer learning, respectively

• Study the Bayesian network approach for one-shot learning

• Implement one-shot learning approaches based on metrics, models, and optimization in PyTorch

• Discover different optimization algorithms that help to improve accuracy even with smaller volumes of data

• Explore various one-shot learning architectures based on classification and regression

Who this book is for

If you're an AI researcher or a machine learning or deep learning expert looking to explore one-shot learning, this book is for you. It will help you get started with implementing various one-shot techniques to train models faster. Some Python programming experience is necessary to understand the concepts covered in this book.

© 2020 Packt Publishing (Ebook): 9781838824877

Fecha de lanzamiento

Ebook: 10 de abril de 2020

Otros también disfrutaron...

Explora nuevos mundos

  • Más de 1 millón de títulos

  • Modo sin conexión

  • Kids Mode

  • Cancela en cualquier momento

Ilimitado

Escucha y lee sin límites.

$169 /mes
7 días gratis
  • 1 cuenta

  • Acceso ilimitado

  • Escucha y lee los títulos que quieras

  • Modo sin conexión + Kids Mode

  • Cancela en cualquier momento

Pruébalo ahora

Ilimitado Anual

Escucha y lee sin límites a un mejor precio.

$1190 /año
7 días gratis
Ahorra 40%
  • 1 cuenta

  • Acceso ilimitado

  • Escucha y lee los títulos que quieras

  • Modo sin conexión + Kids Mode

  • Cancela en cualquier momento

Pruébalo ahora
¡Más popular!

Familiar

Perfecto para compartir historias con toda la familia.

Desde $259 /mes
7 días gratis
  • 4-6 cuentas

  • 100 horas/mes para cada cuenta

  • Acceso a todo el catálogo

  • Modo sin conexión + Kids Mode

  • Cancela en cualquier momento

4 cuentas

$259 /mes
Pruébalo ahora