Escucha y lee

Descubre un mundo infinito de historias

  • Lee y escucha todo lo que quieras
  • Más de 900 000 títulos
  • Títulos exclusivos + Storytel Originals
  • 7 días de prueba gratis, luego $169 MXN al mes
  • Cancela cuando quieras
Suscríbete ahora
Copy of Device Banner Block 894x1036 3

Learn Unity ML-Agents – Fundamentals of Unity Machine Learning: Incorporate new powerful ML algorithms such as Deep Reinforcement Learning for games

Idioma
Inglés
Format
Categoría

No ficción

Transform games into environments using machine learning and Deep learning with Tensorflow, Keras, and Unity Key Features • Learn how to apply core machine learning concepts to your games with Unity • Learn the Fundamentals of Reinforcement Learning and Q-Learning and apply them to your games • Learn How to build multiple asynchronous agents and run them in a training scenario Book Description Unity Machine Learning agents allow researchers and developers to create games and simulations using the Unity Editor, which serves as an environment where intelligent agents can be trained with machine learning methods through a simple-to-use Python API.

This book takes you from the basics of Reinforcement and Q Learning to building Deep Recurrent Q-Network agents that cooperate or compete in a multi-agent ecosystem. You will start with the basics of Reinforcement Learning and how to apply it to problems. Then you will learn how to build self-learning advanced neural networks with Python and Keras/TensorFlow. From there you move o n to more advanced training scenarios where you will learn further innovative ways to train your network with A3C, imitation, and curriculum learning models. By the end of the book, you will have learned how to build more complex environments by building a cooperative and competitive multi-agent ecosystem. What you will learn • Develop Reinforcement and Deep Reinforcement Learning for games. • Understand complex and advanced concepts of reinforcement learning and neural networks • Explore various training strategies for cooperative and competitive agent development • Adapt the basic script components of Academy, Agent, and Brain to be used with Q Learning. • Enhance the Q Learning model with improved training strategies such as Greedy-Epsilon exploration • Implement a simple NN with Keras and use it as an external brain in Unity • Understand how to add LTSM blocks to an existing DQN • Build multiple asynchronous agents and run them in a training scenario Who this book is for This book is intended for developers with an interest in using Machine learning algorithms to develop better games and simulations with Unity.

The reader will be required to have a working knowledge of C# and a basic understanding of Python. Micheal Lanham is a proven software architect with 20 years' experience of developing a range of software, including games, mobile, graphic, web, desktop, engineering, GIS, and machine learning applications for various industries. In 2000, Micheal began working with machine learning and would later use various technologies for a broad range of apps, from geomechanics to inspecting pipelines in 3D. He was later introduced to Unity and has been an avid developer and author of multiple Unity apps and books since.

© 2018 Packt Publishing (eBook): 9781789131864

Fecha de lanzamiento

eBook: 30 de junio de 2018

Otros también disfrutaron...

Explora nuevos mundos

  • Más de 900,000 títulos

  • Modo sin conexión

  • Kids Mode

  • Cancela en cualquier momento

¡Más popular!
Oferta por tiempo limitado

Ilimitado

Nada mejor que un audiolibro para esta temporada.

$169 /mes
Ahorra 50%
  • 1 cuenta

  • Acceso ilimitado

  • Escucha y lee los títulos que quieras

  • Modo sin conexión + Kids Mode

  • Cancela en cualquier momento

Pruébalo ahora

Ilimitado Anual

Escucha y lee sin límites a un mejor precio.

$1190 /año
7 días gratis
Ahorra 40%
  • 1 cuenta

  • Acceso ilimitado

  • Escucha y lee los títulos que quieras

  • Modo sin conexión + Kids Mode

  • Cancela en cualquier momento

Pruébalo ahora

Familiar

Perfecto para compartir historias con toda la familia.

Desde $259 /mes
7 días gratis
  • 4-6 cuentas

  • 100 horas/mes para cada cuenta

  • Acceso a todo el catálogo

  • Modo sin conexión + Kids Mode

  • Cancela en cualquier momento

4 cuentas

$259 /mes
Pruébalo ahora