Descubre un mundo infinito de historias
No ficción
Google's TensorFlow is a game changer in the world of machine learning. It has made machine learning faster, simpler, and more accessible than ever before. This book will teach you how to easily get started with machine learning using the power of Python and TensorFlow 1.x.
Firstly, you’ll cover the basic installation procedure and explore the capabilities of TensorFlow 1.x. This is followed by training and running the first classifier, and coverage of the unique features of the library including data ?ow graphs, training, and the visualization of performance with TensorBoard—all within an example-rich context using problems from multiple industries. You’ll be able to further explore text and image analysis, and be introduced to CNN models and their setup in TensorFlow 1.x. Next, you’ll implement a complete real-life production system from training to serving a deep learning model. As you advance you’ll learn about Amazon Web Services (AWS) and create a deep neural network to solve a video action recognition problem. Lastly, you’ll convert the Caffe model to TensorFlow and be introduced to the high-level TensorFlow library, TensorFlow-Slim.
By the end of this book, you will be geared up to take on any challenges of implementing TensorFlow 1.x in your machine learning environment.
© 2017 Packt Publishing (eBook): 9781786461988
Fecha de lanzamiento
eBook: 21 de noviembre de 2017
Más de 900,000 títulos
Modo sin conexión
Kids Mode
Cancela en cualquier momento
Escucha y lee sin límites.
1 cuenta
Acceso ilimitado
Escucha y lee los títulos que quieras
Modo sin conexión + Kids Mode
Cancela en cualquier momento
Escucha y lee sin límites a un mejor precio.
1 cuenta
Acceso ilimitado
Escucha y lee los títulos que quieras
Modo sin conexión + Kids Mode
Cancela en cualquier momento
Perfecto para compartir historias con toda la familia.
4-6 cuentas
100 horas/mes para cada cuenta
Acceso a todo el catálogo
Modo sin conexión + Kids Mode
Cancela en cualquier momento
4 cuentas
$259 /mesEspañol
México