Escucha y lee

Descubre un mundo infinito de historias

  • Lee y escucha todo lo que quieras
  • Más de 1 millón de títulos
  • Títulos exclusivos + Storytel Originals
  • 7 días de prueba gratis, luego $169 MXN al mes
  • Cancela cuando quieras
Suscríbete ahora
Copy of Device Banner Block 894x1036 3
Cover for MLflow for Machine Learning Operations: The Complete Guide for Developers and Engineers

MLflow for Machine Learning Operations: The Complete Guide for Developers and Engineers

Idioma
Inglés
Formato
Categoría

No ficción

"MLflow for Machine Learning Operations"

"MLflow for Machine Learning Operations" is an authoritative guide that illuminates the principles and practicalities of deploying robust machine learning solutions in modern organizations. It opens with a comprehensive survey of the MLOps landscape, addressing the full lifecycle from experiment tracking and reproducibility, to production governance and compliance. Readers are carefully introduced to the challenges inherent in operationalizing machine learning—such as scalability, automation, security, and integration—before delving deep into why and how MLflow emerges as the central platform for orchestrating these workflows.

The book offers an in-depth exploration of MLflow’s modular capabilities: from experiment tracking and artifact management, to reproducible packaging using MLflow Projects, model logging and deployment for diverse frameworks, and robust lifecycle management with the Model Registry. Through practical strategies and architectural patterns, it details how MLflow can be seamlessly integrated into enterprise CI/CD pipelines, storage, and compute infrastructure, while also highlighting advanced topics such as automated model validation, access control, audit trails, and observability at production scale.

Further strengthening its value, the volume examines key ecosystem integrations and operational best practices for security, compliance, and cost governance. Real-world patterns for federated, multi-cloud, and edge ML operations are illustrated, alongside forward-looking guidance on explainable AI, bias mitigation, and emerging trends in MLOps. Whether for ML engineers, data scientists, or technology leaders, this essential resource empowers readers to harness MLflow for efficient, secure, and scalable machine learning operations across their organizations.

© 2025 HiTeX Press (Ebook): 6610001030278

Fecha de lanzamiento

Ebook: 19 de agosto de 2025

Etiquetas

    Otros también disfrutaron...

    Explora nuevos mundos

    • Más de 1 millón de títulos

    • Modo sin conexión

    • Kids Mode

    • Cancela en cualquier momento

    Ilimitado

    Escucha y lee sin límites.

    $169 /mes

    7 días gratis
    • Escucha y lee los títulos que quieras

    • Modo sin conexión + Kids Mode

    • Cancela en cualquier momento

    Suscríbete ahora

    Ilimitado Anual

    Escucha y lee sin límites a un mejor precio.

    $1190 /año

    7 días gratis
    Ahorra 40%
    • Escucha y lee los títulos que quieras

    • Modo sin conexión + Kids Mode

    • Cancela en cualquier momento

    Pruébalo ahora
    Más popular

    Familiar

    Perfecto para compartir historias con toda la familia.

    Desde $259 /mes

    7 días gratis
    • Acceso a todo el catálogo

    • Modo sin conexión + Kids Mode

    • Cancela en cualquier momento

    Tú + 3 miembros de la familia4 cuentas

    $259 /mes

    Pruébalo ahora