Escucha y lee

Descubre un mundo infinito de historias

  • Lee y escucha todo lo que quieras
  • Más de 1 millón de títulos
  • Títulos exclusivos + Storytel Originals
  • 7 días de prueba gratis, luego $169 MXN al mes
  • Cancela cuando quieras
Suscríbete ahora
Copy of Device Banner Block 894x1036 3
Cover for Monte Carlo Integration and Data Reliability: The Complete Guide for Developers and Engineers

Monte Carlo Integration and Data Reliability: The Complete Guide for Developers and Engineers

Idioma
Inglés
Formato
Categoría

No ficción

"Monte Carlo Integration and Data Reliability"

"Monte Carlo Integration and Data Reliability" offers a comprehensive and rigorous exploration of the mathematical, computational, and practical foundations of Monte Carlo integration, with a unique emphasis on the impact and management of uncertain and unreliable data. The book opens with a deep dive into the probabilistic and measure-theoretic underpinnings of Monte Carlo methods, providing detailed coverage of convergence theorems, sources of estimation error, and challenges posed by high-dimensional problems. Readers are equipped with advanced integration techniques—including variance reduction, adaptive and Markov Chain Monte Carlo strategies, and quasi-Monte Carlo methods—as well as state-of-the-art approaches for implementing and scaling algorithms across modern computing architectures.

Beyond algorithmic fundamentals, this text distinguishes itself by integrating the principles of data reliability directly into the world of stochastic simulation and numerical integration. It covers the definition and measurement of data reliability, models data corruption and loss, and investigates redundancy, error-correcting codes, and integrity verification in storage and transmission. The interplay between input data quality and the reliability of simulation outcomes is explored in depth, complemented by statistical techniques for error assessment, uncertainty quantification, and robust algorithm design. Real-world case studies illustrate how to engineer resilience against imperfect, incomplete, or noisy data within Monte Carlo frameworks.

Designed for researchers and practitioners across applied mathematics, engineering, finance, and computational science, this volume also addresses topics of verification, validation, and reproducibility in Monte Carlo workflows. It presents up-to-date methodologies for continuous validation, pipelines automation, and reproducible research, rounding out the discussion with application-driven chapters spanning quantitative finance, computational sciences, engineering design, biological modeling, and big data. The book concludes by surveying frontier research directions, including Monte Carlo approaches in quantum computing, hybrid simulation-learning methods, and the challenges of uncertainty at exascale. This work serves as an essential reference for anyone seeking to advance the robustness and reliability of simulation-based integration in data-rich, real-world environments.

© 2025 HexTeX Press (Ebook): 6610001085544

Fecha de lanzamiento

Ebook: 24 de octubre de 2025

Etiquetas

    Otros también disfrutaron...

    Explora nuevos mundos

    • Más de 1 millón de títulos

    • Modo sin conexión

    • Kids Mode

    • Cancela en cualquier momento

    ¡Oferta por tiempo limitado!

    Ilimitado Mensual

    Empieza el año con un audiolibro.

    $169 /mes

    • Escucha y lee los títulos que quieras

    • Modo sin conexión + Kids Mode

    • Cancela en cualquier momento

    Suscríbete ahora

    Ilimitado Anual

    Escucha y lee sin límites a un mejor precio.

    $1190 /año

    • Escucha y lee los títulos que quieras

    • Modo sin conexión + Kids Mode

    • Cancela en cualquier momento

    Pruébalo ahora

    Familiar

    Perfecto para compartir historias con toda la familia.

    Desde $259 /mes

    • Acceso a todo el catálogo

    • Modo sin conexión + Kids Mode

    • Cancela en cualquier momento

    Tú + 3 miembros de la familia4 cuentas

    $259 /mes

    Pruébalo ahora