Escucha y lee

Descubre un mundo infinito de historias

  • Lee y escucha todo lo que quieras
  • Más de 900 000 títulos
  • Títulos exclusivos + Storytel Originals
  • 7 días de prueba gratis, luego $7.99 /mes
  • Cancela cuando quieras
Suscríbete ahora
Copy of Device Banner Block 894x1036 3

Bayesian Non- and Semi-parametric Methods and Applications

Series

1 of 4

Idioma
Inglés
Format
Categoría

Negocios y economía

This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available, a natural desire to provide methods that relax these assumptions arises. Peter Rossi advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. The Bayesian approach can use either a large but fixed number of normal components in the mixture or an infinite number bounded only by the sample size. By using flexible distributional approximations instead of fixed parametric models, the Bayesian approach can reap the advantages of an efficient method that models all of the structure in the data while retaining desirable smoothing properties. Non-Bayesian non-parametric methods often require additional ad hoc rules to avoid "overfitting," in which resulting density approximates are nonsmooth. With proper priors, the Bayesian approach largely avoids overfitting, while retaining flexibility. This book provides methods for assessing informative priors that require only simple data normalizations. The book also applies the mixture of the normals approximation method to a number of important models in microeconometrics and marketing, including the non-parametric and semi-parametric regression models, instrumental variables problems, and models of heterogeneity. In addition, the author has written a free online software package in R, "bayesm," which implements all of the non-parametric models discussed in the book.

© 2014 Princeton University Press (eBook): 9781400850303

Fecha de lanzamiento

eBook: 27 de abril de 2014

Otros también disfrutaron...

Siempre con Storytel:

  • Acceso ilimitado

  • Modo sin conexión

  • Modo Infantil

  • Cancela en cualquier momento

Historias ilimitadas siempre

Ilimitado

Para los que quieren escuchar y leer sin límites.

$7.99 /mes
7 días gratis
7 días gratis
  • 1 cuenta

  • Acceso ilimitado

  • Escucha y lee los títulos que quieras

  • Modo sin conexión + Modo Infantil

  • Cancela en cualquier momento

Pruébalo ahora