Escucha y lee

Descubre un mundo infinito de historias

  • Lee y escucha todo lo que quieras
  • Más de 1 millón de títulos
  • Títulos exclusivos + Storytel Originals
  • 7 días de prueba gratis, luego $7.99 /mes
  • Cancela cuando quieras
Suscríbete ahora
Copy of Device Banner Block 894x1036 3
Cover for TVM: Compiler Infrastructure for Deep Learning Optimization: The Complete Guide for Developers and Engineers

TVM: Compiler Infrastructure for Deep Learning Optimization: The Complete Guide for Developers and Engineers

Idioma
Inglés
Formato
Categoría

No ficción

"TVM: Compiler Infrastructure for Deep Learning Optimization"

"TVM: Compiler Infrastructure for Deep Learning Optimization" delivers a comprehensive exploration of the principles, architecture, and cutting-edge techniques underlying TVM—a pioneering open-source compiler stack designed to optimize and deploy deep learning models across a diverse range of hardware backends. Beginning with an incisive overview of why traditional compilers fall short for deep learning workloads, the book guides readers through key foundations such as computational graph abstractions, intermediate representations, and performance-driven compilation strategies that empower model portability and efficiency.

The text meticulously details TVM’s layered system architecture, covering components such as the Relay high-level IR, the tensor expression language and scheduling primitives, as well as framework integration and extensibility for custom operators and hardware targets. Advanced chapters delve into specialized topics including graph transformations, backend-specific code generation for CPUs, GPUs, NPUs, and FPGAs, and fine-grained scheduling optimizations enabled by AutoTVM and meta-scheduling. Practical insights into memory management, automatic differentiation, and debugging tools illuminate the complexities of optimizing neural networks for both cloud-scale and edge deployments.

With dedicated sections addressing deployment pipelines, security, interoperability with serving and cloud-native infrastructure, and best practices for extending the ecosystem, this book serves as both an in-depth reference and a practical guide for engineers, researchers, and practitioners. The concluding chapters look toward the frontier of the field—discussing formal verification, privacy-preserving compilation, sparse workload optimization, and anticipated hardware trends—making this an indispensable resource for anyone involved in deep learning systems, compiler design, or hardware-software co-design.

© 2025 HiTeX Press (Ebook): 6610001024598

Fecha de lanzamiento

Ebook: 20 de agosto de 2025

Etiquetas

    Otros también disfrutaron...

    Explora nuevos mundos

    • Más de 1 millón de títulos

    • Modo sin conexión

    • Kids Mode

    • Cancela en cualquier momento

    Unlimited

    Para los que quieren escuchar y leer sin límites.

    $7.99 /mes

    7 días gratis
    • Escucha y lee los títulos que quieras

    • Modo sin conexión + Modo Infantil

    • Cancela en cualquier momento

    Pruébalo ahora