Ouça e leia

Entre em um mundo infinito de histórias

  • Ler e ouvir tanto quanto você quiser
  • Com mais de 500.000 títulos
  • Títulos exclusivos + Storytel Originals
  • 7 dias de teste gratuito, depois R$19,90/mês
  • Fácil de cancelar a qualquer momento
Assine agora
br bdp devices

Blow-up Theory for Elliptic PDEs in Riemannian Geometry

Séries

45 of 5

Idiomas
Inglês
Format
Categoria

Não-ficção

Elliptic equations of critical Sobolev growth have been the target of investigation for decades because they have proved to be of great importance in analysis, geometry, and physics. The equations studied here are of the well-known Yamabe type. They involve Schrödinger operators on the left hand side and a critical nonlinearity on the right hand side.

A significant development in the study of such equations occurred in the 1980s. It was discovered that the sequence splits into a solution of the limit equation--a finite sum of bubbles--and a rest that converges strongly to zero in the Sobolev space consisting of square integrable functions whose gradient is also square integrable. This splitting is known as the integral theory for blow-up. In this book, the authors develop the pointwise theory for blow-up. They introduce new ideas and methods that lead to sharp pointwise estimates. These estimates have important applications when dealing with sharp constant problems (a case where the energy is minimal) and compactness results (a case where the energy is arbitrarily large). The authors carefully and thoroughly describe pointwise behavior when the energy is arbitrary.

Intended to be as self-contained as possible, this accessible book will interest graduate students and researchers in a range of mathematical fields.

© 2009 Princeton University Press (Ebook): 9781400826162

Data de lançamento

Ebook: 10 de janeiro de 2009

Outros também usufruíram...