Ouça e leia

Entre em um mundo infinito de histórias

  • Ler e ouvir tanto quanto você quiser
  • Com mais de 500.000 títulos
  • Títulos exclusivos + Storytel Originals
  • 7 dias de teste gratuito, depois R$19,90/mês
  • Fácil de cancelar a qualquer momento
Assine agora
br bdp devices
Cover for Interpretability and Explainability in AI Using Python

Interpretability and Explainability in AI Using Python

Aprender idiomas
Inglês
Formato
Categoria

Não-ficção

Demystify AI Decisions and Master Interpretability and Explainability Today

Book Description

Interpretability in AI/ML refers to the ability to understand and explain how a model arrives at its predictions. It ensures that humans can follow the model's reasoning, making it easier to debug, validate, and trust.

Interpretability and Explainability in AI Using Python takes you on a structured journey through interpretability and explainability techniques for both white-box and black-box models.

You’ll start with foundational concepts in interpretable machine learning, exploring different model types and their transparency levels. As you progress, you’ll dive into post-hoc methods, feature effect analysis, anchors, and counterfactuals—powerful tools to decode complex models. The book also covers explainability in deep learning, including Neural Networks, Transformers, and Large Language Models (LLMs), equipping you with strategies to uncover decision-making patterns in AI systems.

Through hands-on Python examples, you’ll learn how to apply these techniques in real-world scenarios. By the end, you’ll be well-versed in choosing the right interpretability methods, implementing them efficiently, and ensuring AI models align with ethical and regulatory standards—giving you a competitive edge in the evolving AI landscape.

Table of Contents

1. Interpreting Interpretable Machine Learning 2. Model Types and Interpretability Techniques 3. Interpretability Taxonomy and Techniques 4. Feature Effects Analysis with Plots 5. Post-Hoc Methods 6. Anchors and Counterfactuals 7. Interpretability in Neural Networks 8. Explainable Neural Networks 9. Explainability in Transformers and Large Language Models 10. Explainability and Responsible AI

Index

© 2025 Orange Education Pvt Ltd (Ebook): 9789348107749

Data de lançamento

Ebook: 15 de abril de 2025

Outros também usufruíram...