Ouça e leia

Entre em um mundo infinito de histórias

  • Ler e ouvir tanto quanto você quiser
  • Com mais de 500.000 títulos
  • Títulos exclusivos + Storytel Originals
  • 7 dias de teste gratuito, depois R$19,90/mês
  • Fácil de cancelar a qualquer momento
Assine agora
br bdp devices

Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

Idiomas
Inglês
Format
Categoria

Não-ficção

– In an era of evolving privacy regulations, compliance is mandatory for every enterprise

– Machine learning engineers face the dual challenge of analyzing vast amounts of data for insights while protecting sensitive information

– This book addresses the complexities arising from large data volumes and the scarcity of in-depth privacy-preserving machine learning expertise, and covers a comprehensive range of topics from data privacy and machine learning privacy threats to real-world privacy-preserving cases

– As you progress, you’ll be guided through developing anti-money laundering solutions using federated learning and differential privacy

– Dedicated sections will explore data in-memory attacks and strategies for safeguarding data and ML models

– You’ll also explore the imperative nature of confidential computation and privacy-preserving machine learning benchmarks, as well as frontier research in the field

– Upon completion, you’ll possess a thorough understanding of privacy-preserving machine learning, equipping them to effectively shield data from real-world threats and attacks

© 2024 Packt Publishing (Ebook): 9781800564220

Data de lançamento

Ebook: 24 de maio de 2024

Outros também usufruíram...