Loe ja kuula

Astu lugude lõputusse maailma

  • Proovi tasuta
  • Loe ja kuula nii palju, kui soovid
  • Suurim valik eestikeelseid raamatuid
  • Kokku üle 700 000 raamatu 4 keeles
Proovi tasuta
Device Banner Block-copy 894x1036
Cover for Mastering Probabilistic Graphical Models with Python: Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python

Mastering Probabilistic Graphical Models with Python: Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python

Keel
inglise
Vorming
Kategooria

Teadmiskirjandus

Probabilistic Graphical Models is a technique in machine learning that uses the concepts of graph theory to compactly represent and optimally predict values in our data problems. In real world problems, it's often difficult to select the appropriate graphical model as well as the appropriate inference algorithm, which can make a huge difference in computation time and accuracy. Thus, it is crucial to know the working details of these algorithms.

This book starts with the basics of probability theory and graph theory, then goes on to discuss various models and inference algorithms. All the different types of models are discussed along with code examples to create and modify them, and also to run different inference algorithms on them. There is a complete chapter devoted to the most widely used networks Naive Bayes Model and Hidden Markov Models (HMMs). These models have been thoroughly discussed using real-world examples.

© 2015 Packt Publishing (E-raamat): 9781784395216

Väljaandmise kuupäev

E-raamat: 3. august 2015

Vali pakett

  • Kokku üle 700 000 raamatu 4 keeles

  • Suur valik eestikeelseid raamatuid

  • Uusi raamatuid iga nädal

  • Kids Mode lastesõbralik keskkond

Populaarne

Unlimited

14.99 € /kuus

  • Tühista igal ajal

Proovi kohe

Unlimited (aastane)

119.99 € /aasta

  • Säästa 33%

Proovi kohe