오디오북 라이프의 시작

격이 다른 오디오북 생활을 경험해보세요!

  • 언제든 손쉽게 구독해지 가능
  • 월정액 11900원 부터
  • 무제한 청취
  • 총 5만권 이상의 영/한 오디오북
  • 온가족을 위한 다양한 오디오북
지금 바로 시작해보세요!
kr all devices
Cover for Computational Aspects of Modular Forms and Galois Representations: How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime

Computational Aspects of Modular Forms and Galois Representations: How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime

시리즈

176<1> / <2> 21

언어학습
영어
형식
컬렉션

논픽션

Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program.

The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields.

The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.

© 2011 Princeton University Press (전자책): 9781400839001

출시일

전자책: 2011년 5월 31일

다른 사람들도 즐겼습니다 ...

언제 어디서나 스토리텔

  • 국내 유일 해리포터 시리즈 오디오북

  • 5만권이상의 영어/한국어 오디오북

  • 키즈 모드(어린이 안전 환경)

  • 월정액 무제한 청취

  • 언제든 취소 및 해지 가능

  • 오프라인 액세스를 위한 도서 다운로드

인기

스토리텔 언리미티드

5만권 이상의 영어, 한국어 오디오북을 무제한 들어보세요

11900 원 /월

  • 사용자 1인

  • 무제한 청취

  • 언제든 해지하실 수 있어요

지금 바로 시작하기

패밀리

친구 또는 가족과 함께 오디오북을 즐기고 싶은 분들을 위해

매달 17900 원 원 부터

  • 2-3 계정

  • 무제한 청취

  • 언제든 해지하실 수 있어요

본인 + 1 가족 구성원2 개 계정

17900 원 /월

지금 바로 시작하기