오디오북 라이프의 시작

격이 다른 오디오북 생활을 경험해보세요!

  • 언제든 손쉽게 구독해지 가능
  • 월정액 11900원 부터
  • 무제한 청취
  • 총 5만권 이상의 영/한 오디오북
  • 온가족을 위한 다양한 오디오북
지금 바로 시작해보세요!
kr all devices
Cover for Deep Learning with R Cookbook: Over 45 unique recipes to delve into neural network techniques using R 3.5.x

Deep Learning with R Cookbook: Over 45 unique recipes to delve into neural network techniques using R 3.5.x

언어학습
영어
형식
컬렉션

논픽션

Tackle the complex challenges faced while building end-to-end deep learning models using modern R libraries

Key Features

• Understand the intricacies of R deep learning packages to perform a range of deep learning tasks

• Implement deep learning techniques and algorithms for real-world use cases

• Explore various state-of-the-art techniques for fine-tuning neural network models

Book Description

Deep learning (DL) has evolved in recent years with developments such as generative adversarial networks (GANs), variational autoencoders (VAEs), and deep reinforcement learning. This book will get you up and running with R 3.5.x to help you implement DL techniques.

The book starts with the various DL techniques that you can implement in your apps. A unique set of recipes will help you solve binomial and multinomial classification problems, and perform regression and hyperparameter optimization. To help you gain hands-on experience of concepts, the book features recipes for implementing convolutional neural networks (CNNs), recurrent neural networks (RNNs), and Long short-term memory (LSTMs) networks, as well as sequence-to-sequence models and reinforcement learning. You'll then learn about high-performance computation using GPUs, along with learning about parallel computation capabilities in R. Later, you'll explore libraries, such as MXNet, that are designed for GPU computing and state-of-the-art DL. Finally, you'll discover how to solve different problems in NLP, object detection, and action identification, before understanding how to use pre-trained models in DL apps.

By the end of this book, you'll have comprehensive knowledge of DL and DL packages, and be able to develop effective solutions for different DL problems.

What you will learn

• Work with different datasets for image classification using CNNs

• Apply transfer learning to solve complex computer vision problems

• Use RNNs and their variants such as LSTMs and Gated Recurrent Units (GRUs) for sequence data generation and classification

• Implement autoencoders for DL tasks such as dimensionality reduction, denoising, and image colorization

• Build deep generative models to create photorealistic images using GANs and VAEs

• Use MXNet to accelerate the training of DL models through distributed computing

Who this book is for

This deep learning book is for data scientists, machine learning practitioners, deep learning researchers and AI enthusiasts who want to learn key tasks in deep learning domains using a recipe-based approach. A strong understanding of machine learning and working knowledge of the R programming language is mandatory.

© 2020 Packt Publishing (전자책): 9781789808278

출시일

전자책: 2020년 2월 21일

태그

    다른 사람들도 즐겼습니다 ...

    언제 어디서나 스토리텔

    • 국내 유일 해리포터 시리즈 오디오북

    • 5만권이상의 영어/한국어 오디오북

    • 키즈 모드(어린이 안전 환경)

    • 월정액 무제한 청취

    • 언제든 취소 및 해지 가능

    • 오프라인 액세스를 위한 도서 다운로드

    인기

    스토리텔 언리미티드

    5만권 이상의 영어, 한국어 오디오북을 무제한 들어보세요

    11900 원 /월

    • 사용자 1인

    • 무제한 청취

    • 언제든 해지하실 수 있어요

    지금 바로 시작하기

    패밀리

    친구 또는 가족과 함께 오디오북을 즐기고 싶은 분들을 위해

    매달 17900 원 원 부터

    • 2-3 계정

    • 무제한 청취

    • 언제든 해지하실 수 있어요

    본인 + 1 가족 구성원2 개 계정

    17900 원 /월

    지금 바로 시작하기