오디오북 라이프의 시작

격이 다른 오디오북 생활을 경험해보세요!

  • 언제든 손쉽게 구독해지 가능
  • 월정액 11900원 부터
  • 무제한 청취
  • 총 5만권 이상의 영/한 오디오북
  • 온가족을 위한 다양한 오디오북
지금 바로 시작해보세요!
kr all devices

Hands-On Reinforcement Learning for Games: Implementing self-learning agents in games using artificial intelligence techniques

언어
영어
Format
카테고리

논픽션

Explore reinforcement learning (RL) techniques to build cutting-edge games using Python libraries such as PyTorch, OpenAI Gym, and TensorFlow

Key Features

• Get to grips with the different reinforcement and DRL algorithms for game development

• Learn how to implement components such as artificial agents, map and level generation, and audio generation

• Gain insights into cutting-edge RL research and understand how it is similar to artificial general research

Book Description

With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python.

Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent's productivity. As you advance, you'll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games.

By the end of this book, you'll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications.

What you will learn

• Understand how deep learning can be integrated into an RL agent

• Explore basic to advanced algorithms commonly used in game development

• Build agents that can learn and solve problems in all types of environments

• Train a Deep Q-Network (DQN) agent to solve the CartPole balancing problem

• Develop game AI agents by understanding the mechanism behind complex AI

• Integrate all the concepts learned into new projects or gaming agents

Who this book is for

If you're a game developer looking to implement AI techniques to build next-generation games from scratch, this book is for you. Machine learning and deep learning practitioners, and RL researchers who want to understand how to use self-learning agents in the game domain will also find this book useful. Knowledge of game development and Python programming experience are required.

© 2020 Packt Publishing (전자책 ): 9781839216770

출시일

전자책 : 2020년 1월 3일

다른 사람들도 즐겼습니다 ...

언제 어디서나 스토리텔

  • 국내 유일 해리포터 시리즈 오디오북

  • 5만권이상의 영어/한국어 오디오북

  • 키즈 모드(어린이 안전 환경)

  • 월정액 무제한 청취

  • 언제든 취소 및 해지 가능

  • 오프라인 액세스를 위한 도서 다운로드

인기

스토리텔 언리미티드

5만권 이상의 영어, 한국어 오디오북을 무제한 들어보세요

11900 원 /월
  • 계정 1개

  • 무제한 청취

  • 사용자 1인

  • 무제한 청취

  • 언제든 해지하실 수 있어요

지금 바로 시작하기

패밀리

친구 또는 가족과 함께 오디오북을 즐기고 싶은 분들을 위해

매달 17900원 부터
  • 2-3 계정

  • 무제한 청취

  • 2-3 계정

  • 무제한 청취

  • 언제든 해지하실 수 있어요

2 개 계정

17900 원 /월
지금 바로 시작하기