오디오북 라이프의 시작

격이 다른 오디오북 생활을 경험해보세요!

  • 언제든 손쉽게 구독해지 가능
  • 월정액 11900원 부터
  • 무제한 청취
  • 총 5만권 이상의 영/한 오디오북
  • 온가족을 위한 다양한 오디오북
지금 바로 시작해보세요!
kr all devices

PyTorch 1.x Reinforcement Learning Cookbook : Over 60 recipes to design, develop and deploy self-learning AI models using Python: Over 60 recipes to design, develop, and deploy self-learning AI models using Python

언어
영어
Format
카테고리

논픽션

Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipes

Key Features

• Use PyTorch 1.x to design and build self-learning artificial intelligence (AI) models

• Implement RL algorithms to solve control and optimization challenges faced by data scientists today

• Apply modern RL libraries to simulate a controlled environment for your projects

Book Description

Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use.

With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game.

By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems.

What you will learn

• Use Q-learning and the state–action–reward–state–action (SARSA) algorithm to solve various Gridworld problems

• Develop a multi-armed bandit algorithm to optimize display advertising

• Scale up learning and control processes using Deep Q-Networks

• Simulate Markov Decision Processes, OpenAI Gym environments, and other common control problems

• Select and build RL models, evaluate their performance, and optimize and deploy them

• Use policy gradient methods to solve continuous RL problems

Who this book is for

Machine learning engineers, data scientists and AI researchers looking for quick solutions to different reinforcement learning problems will find this book useful. Although prior knowledge of machine learning concepts is required, experience with PyTorch will be useful but not necessary.

© 2019 Packt Publishing (전자책 ): 9781838553234

출시일

전자책 : 2019년 10월 31일

태그

    다른 사람들도 즐겼습니다 ...

    언제 어디서나 스토리텔

    • 국내 유일 해리포터 시리즈 오디오북

    • 5만권이상의 영어/한국어 오디오북

    • 키즈 모드(어린이 안전 환경)

    • 월정액 무제한 청취

    • 언제든 취소 및 해지 가능

    • 오프라인 액세스를 위한 도서 다운로드

    인기

    스토리텔 언리미티드

    5만권 이상의 영어, 한국어 오디오북을 무제한 들어보세요

    11900 원 /월
    • 계정 1개

    • 무제한 청취

    • 사용자 1인

    • 무제한 청취

    • 언제든 해지하실 수 있어요

    지금 바로 시작하기

    패밀리

    친구 또는 가족과 함께 오디오북을 즐기고 싶은 분들을 위해

    매달 17900원 부터
    • 2-3 계정

    • 무제한 청취

    • 2-3 계정

    • 무제한 청취

    • 언제든 해지하실 수 있어요

    2 개 계정

    17900 원 /월
    지금 바로 시작하기