격이 다른 오디오북 생활을 경험해보세요!
This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric?
The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies that most Grassmannians are spectrally rigid to the first order. This is particularly important, for there are still few isospectrality results for positively curved spaces and these are the first such results for symmetric spaces of compact type of rank >1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces.
A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry.
© 2009 Princeton University Press (전자책 ): 9781400826179
출시일
전자책 : 2009년 1월 10일
국내 유일 해리포터 시리즈 오디오북
5만권이상의 영어/한국어 오디오북
키즈 모드(어린이 안전 환경)
월정액 무제한 청취
언제든 취소 및 해지 가능
오프라인 액세스를 위한 도서 다운로드
친구 또는 가족과 함께 오디오북을 즐기고 싶은 분들을 위해
2-3 계정
무제한 액세스
2-3 계정
무제한 청취
언제든 해지하실 수 있어요
2 계정
17900 원 /월한국어
대한민국