오디오북 라이프의 시작

격이 다른 오디오북 생활을 경험해보세요!

  • 언제든 손쉽게 구독해지 가능
  • 월정액 11900원 부터
  • 무제한 청취
  • 총 5만권 이상의 영/한 오디오북
  • 온가족을 위한 다양한 오디오북
지금 바로 시작해보세요!
kr all devices
Cover for Transformers in Deep Learning Architecture: Definitive Reference for Developers and Engineers

Transformers in Deep Learning Architecture: Definitive Reference for Developers and Engineers

언어학습
영어
형식
컬렉션

논픽션

"Transformers in Deep Learning Architecture"

"Transformers in Deep Learning Architecture" presents a comprehensive and rigorous exploration of the transformer paradigm—the foundational architecture that has revolutionized modern artificial intelligence. The book opens by situating transformers within the historical context of neural sequence models, methodically tracing their evolution from recurrent neural networks to the self-attention mechanisms that address their predecessor’s limitations. Early chapters lay a strong mathematical and conceptual foundation, introducing key terminology, theoretical principles, and detailed comparisons with alternative architectures to prepare readers for a deep technical dive.

At its core, the book delivers an in-depth analysis of the architectural details and operational intricacies that underpin transformer models. Subsequent chapters dissect the encoder-decoder framework, decompose self-attention and multi-head attention mechanisms, and discuss design choices such as positional encodings, feedforward networks, normalization strategies, and scaling laws. Readers also encounter a nuanced treatment of advanced attention variants—including efficient, sparse, and cross-modal extensions—along with proven paradigms for pretraining, transfer learning, and domain adaptation. Rich case studies illustrate the extraordinary performance of transformers in natural language processing, vision, audio, and multimodal tasks, highlighting both established applications and emerging frontiers.

Beyond technical mastery, the book addresses the practical dimensions and responsible deployment of large transformer models. It guides practitioners through scalable training, distributed modernization, and infrastructure optimization, while confronting contemporary challenges in interpretability, robustness, ethics, and privacy. The final chapters forecast the transformative future of the field with discussions on long-context modeling, symbolic integration, neuromorphic and quantum-inspired approaches, and the profound societal implications of widespread transformer adoption. Altogether, this volume stands as both an authoritative reference and a visionary roadmap for researchers and engineers working at the cutting edge of deep learning.

© 2025 HiTeX Press (전자책): 6610000817047

출시일

전자책: 2025년 5월 28일

태그

다른 사람들도 즐겼습니다 ...

언제 어디서나 스토리텔

  • 국내 유일 해리포터 시리즈 오디오북

  • 5만권이상의 영어/한국어 오디오북

  • 키즈 모드(어린이 안전 환경)

  • 월정액 무제한 청취

  • 언제든 취소 및 해지 가능

  • 오프라인 액세스를 위한 도서 다운로드

인기

스토리텔 언리미티드

5만권 이상의 영어, 한국어 오디오북을 무제한 들어보세요

13800 원 /월

  • 사용자 1인

  • 무제한 청취

  • 언제든 해지하실 수 있어요

지금 바로 시작하기

패밀리

친구 또는 가족과 함께 오디오북을 즐기고 싶은 분들을 위해

매달 21500 원 원 부터

  • 2-3 계정

  • 무제한 청취

  • 언제든 해지하실 수 있어요

본인 + 1 가족 구성원2 개 계정

21500 원 /월

지금 바로 시작하기