Hands-On Data Analysis with Pandas: Efficiently perform data collection, wrangling, analysis, and visualization using Python

Språk
Engelsk
Format
Kategori

Fakta og dokumentar

Get to grips with pandas—a versatile and high-performance Python library for data manipulation, analysis, and discovery

Key Features

• Perform efficient data analysis and manipulation tasks using pandas

• Apply pandas to different real-world domains using step-by-step demonstrations

• Get accustomed to using pandas as an effective data exploration tool

Book Description

Data analysis has become a necessary skill in a variety of positions where knowing how to work with data and extract insights can generate significant value.

Hands-On Data Analysis with Pandas will show you how to analyze your data, get started with machine learning, and work effectively with Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. Using real-world datasets, you will learn how to use the powerful pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will learn how to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification, using scikit-learn, to make predictions based on past data.

By the end of this book, you will be equipped with the skills you need to use pandas to ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets.

What you will learn

• Understand how data analysts and scientists gather and analyze data

• Perform data analysis and data wrangling in Python

• Combine, group, and aggregate data from multiple sources

• Create data visualizations with pandas, matplotlib, and seaborn

• Apply machine learning (ML) algorithms to identify patterns and make predictions

• Use Python data science libraries to analyze real-world datasets

• Use pandas to solve common data representation and analysis problems

• Build Python scripts, modules, and packages for reusable analysis code

Who this book is for

This book is for data analysts, data science beginners, and Python developers who want to explore each stage of data analysis and scientific computing using a wide range of datasets. You will also find this book useful if you are a data scientist who is looking to implement pandas in machine learning. Working knowledge of Python programming language will be beneficial.

© 2019 Packt Publishing (E-bok): 9781789612806

Utgivelsesdato

E-bok: 26. juli 2019

Andre liker også ...

Derfor vil du elske Storytel:

  • Over 700 000 lydbøker og e-bøker

  • Eksklusive nyheter hver uke

  • Lytt og les offline

  • Kids Mode (barnevennlig visning)

  • Avslutt når du vil

Det mest populære valget

Unlimited

For deg som vil lytte og lese ubegrenset.

219 kr /måned
  • 1 konto

  • Ubegrenset lytting

  • Lytt så mye du vil

  • Over 700 000 bøker

  • Nye eksklusive bøker hver uke

  • Avslutt når du vil

Benytt tilbud
Familiens førstevalg

Family

For deg som ønsker å dele historier med familien.

Fra 289 kr/måned
  • 2-3 kontoer

  • Ubegrenset lytting

  • Lytt så mye du vil

  • Over 700 000 bøker

  • Nye eksklusive bøker hver uke

  • Avslutt når du vil

2 kontoer

289 kr /måned
Benytt tilbud

Basic

For deg som lytter og leser av og til.

149 kr /måned
  • 1 konto

  • 20 timer/måned

  • Lytt opp til 20 timer per måned

  • Over 700 000 bøker

  • Nye eksklusive bøker hver uke

  • Avslutt når du vil

Benytt tilbud

Lytt og les ubegrenset

Kos deg med ubegrenset tilgang til mer enn 700 000 titler.

  • Lytt og les så mye du vil
  • Utforsk et stort bibliotek med fortellinger
  • Over 1500 serier på norsk
  • Ingen bindingstid, avslutt når du vil
Prøv gratis
NO - Details page - Device banner - 894x1036
Cover for Hands-On Data Analysis with Pandas: Efficiently perform data collection, wrangling, analysis, and visualization using Python