Økonomi og ledelse
The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models.
This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research.
This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples.
By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.
© 2020 Packt Publishing (E-bok): 9781839216787
Utgivelsesdato
E-bok: 31. juli 2020
Tagger
Over 700 000 bøker
Eksklusive nyheter hver uke
Lytt og les offline
Kids Mode (barnevennlig visning)
Avslutt når du vil
For deg som vil lytte og lese ubegrenset.
1 konto
Ubegrenset lytting
Lytt så mye du vil
Over 700 000 bøker
Nye eksklusive bøker hver uke
Avslutt når du vil
For deg som ønsker å dele historier med familien.
2-3 kontoer
Ubegrenset lytting
Lytt så mye du vil
Over 700 000 bøker
Nye eksklusive bøker hver uke
Avslutt når du vil
2 kontoer
289 kr /månedFor deg som lytter og leser av og til.
1 konto
20 timer/måned
Lytt opp til 20 timer per måned
Over 700 000 bøker
Nye eksklusive bøker hver uke
Avslutt når du vil
Kos deg med ubegrenset tilgang til mer enn 700 000 titler.
Norsk
Norge