Machine Learning with scikit-learn Quick Start Guide: Classification, regression, and clustering techniques in Python

Språk
Engelsk
Format
Kategori

Fakta og dokumentar

Deploy supervised and unsupervised machine learning algorithms using scikit-learn to perform classification, regression, and clustering.

Key Features

• Build your first machine learning model using scikit-learn

• Train supervised and unsupervised models using popular techniques such as classification, regression and clustering

• Understand how scikit-learn can be applied to different types of machine learning problems

Book Description

Scikit-learn is a robust machine learning library for the Python programming language. It provides a set of supervised and unsupervised learning algorithms. This book is the easiest way to learn how to deploy, optimize, and evaluate all of the important machine learning algorithms that scikit-learn provides.

This book teaches you how to use scikit-learn for machine learning. You will start by setting up and configuring your machine learning environment with scikit-learn. To put scikit-learn to use, you will learn how to implement various supervised and unsupervised machine learning models. You will learn classification, regression, and clustering techniques to work with different types of datasets and train your models.

Finally, you will learn about an effective pipeline to help you build a machine learning project from scratch. By the end of this book, you will be confident in building your own machine learning models for accurate predictions.

What you will learn

• Learn how to work with all scikit-learn's machine learning algorithms

• Install and set up scikit-learn to build your first machine learning model

• Employ Unsupervised Machine Learning Algorithms to cluster unlabelled data into groups

• Perform classification and regression machine learning

• Use an effective pipeline to build a machine learning project from scratch

Who this book is for

This book is for aspiring machine learning developers who want to get started with scikit-learn. Intermediate knowledge of Python programming and some fundamental knowledge of linear algebra and probability will help.

© 2018 Packt Publishing (E-bok): 9781789347371

Utgivelsesdato

E-bok: 30. oktober 2018

Tagger

    Andre liker også ...

    Derfor vil du elske Storytel:

    • Over 900 000 lydbøker og e-bøker

    • Eksklusive nyheter hver uke

    • Lytt og les offline

    • Kids Mode (barnevennlig visning)

    • Avslutt når du vil

    Det mest populære valget
    Black Week-kampanje

    Unlimited

    For deg som vil lytte og lese ubegrenset.

    219 kr /måned
    • 1 konto

    • Ubegrenset lytting

    • Lytt så mye du vil

    • Over 900 000 bøker

    • Nye eksklusive bøker hver uke

    • Avslutt når du vil

    Benytt tilbud
    Black Week-kampanje

    Family

    For deg som ønsker å dele historier med familien.

    Fra 289 kr/måned
    • 2-3 kontoer

    • Ubegrenset lytting

    • Lytt så mye du vil

    • Over 900 000 bøker

    • Nye eksklusive bøker hver uke

    • Avslutt når du vil

    2 kontoer

    289 kr /måned
    Benytt tilbud
    Black Week-kampanje

    Premium

    For deg som lytter og leser ofte.

    189 kr /måned
    • 1 konto

    • 50 timer/måned

    • Lytt opptil 50 timer per måned

    • Over 900 000 bøker

    • Nye eksklusive bøker hver uke

    • Avslutt når du vil

    Benytt tilbud
    Black Week-kampanje

    Basic

    For deg som lytter og leser av og til.

    149 kr /måned
    • 1 konto

    • 20 timer/måned

    • Lytt opp til 20 timer per måned

    • Over 900 000 bøker

    • Nye eksklusive bøker hver uke

    • Avslutt når du vil

    Benytt tilbud

    Lytt og les ubegrenset

    Kos deg med ubegrenset tilgang til mer enn 700 000 titler.

    • Lytt og les så mye du vil
    • Utforsk et stort bibliotek med fortellinger
    • Over 1500 serier på norsk
    • Ingen bindingstid, avslutt når du vil
    Benytt tilbud
    NO - Details page - Device banner - 894x1036
    Cover for Machine Learning with scikit-learn Quick Start Guide: Classification, regression, and clustering techniques in Python