Math for Machine Learning: Linear Algebra, Calculus, and Probability Explained

Språk
Engelsk
Format
Kategori

Fakta og dokumentar

Master the Mathematical Foundation Every Machine Learning Engineer Needs

Are you implementing machine learning algorithms without truly understanding the mathematical principles that power them? Do complex ML concepts feel like black boxes because you lack the mathematical foundation to see inside them? This comprehensive guide bridges the gap between mathematical theory and practical machine learning applications.

Math for Machine Learning: Linear Algebra, Calculus, and Probability Explained transforms abstract mathematical concepts into clear, actionable knowledge that will elevate your machine learning expertise. Unlike dry academic textbooks, this book connects every mathematical concept directly to real-world ML applications, showing you not just how the math works, but why it's essential for machine learning success.

What You'll Master:

Linear Algebra Foundations:

Vectors and matrices as the language of data manipulation

Eigenvalues and eigenvectors for dimensionality reduction

Singular Value Decomposition (SVD) for recommendation systems

Matrix transformations that power neural networks

Calculus for Optimization:

Derivatives and gradients that enable machine learning

Multivariable calculus for complex model optimization

Mathematical optimization techniques used in gradient descent

Partial derivatives for understanding parameter updates

Probability and Statistics:

Probability distributions underlying ML algorithms

Statistical inference for model validation

Expectation and variance for uncertainty quantification

Bayesian thinking for probabilistic machine learning

Applied Mathematical Concepts:

The mathematics behind linear and logistic regression

Neural network backpropagation from first principles

Principal Component Analysis (PCA) mathematical foundations

Optimization algorithms that make learning possible

Why This Book Is Different:

Every mathematical concept is immediately connected to practical machine learning applications. You'll see how vector operations power recommendation engines, how derivatives drive optimization algorithms, and how probability distributions enable uncertainty quantification. The book includes Python implementations using NumPy, SciPy, and scikit-learn, so you can immediately apply what you learn.

Perfect for:

Software engineers transitioning to machine learning

Data science students seeking mathematical clarity

Anyone implementing algorithms without mathematical confidence

Progressive Learning Structure:

Starting with mathematical fundamentals, the book builds systematically through linear algebra, calculus, and probability. Each chapter includes visual explanations, practical examples, and Python code implementations. You'll progress from basic vector operations to understanding the complete mathematical framework behind neural networks.

The final chapters demonstrate how these mathematical concepts unite in real ML algorithms, with hands-on mini-projects that reinforce your learning. Comprehensive appendices provide quick reference materials and Python cheat sheets for ongoing use.

No Advanced Prerequisites Required:

Written for practitioners, not mathematicians. If you can program and aren't afraid of mathematical concepts, you're ready to begin. Complex ideas are broken down into digestible explanations with plenty of visual aids and practical examples.

Start building unshakeable mathematical confidence in machine learning today.

© 2025 Dargslan s.r.o. (E-bok): 6610001067571

Utgivelsesdato

E-bok: 30. september 2025

Tagger

    Derfor vil du elske Storytel:

    • Over 900 000 lydbøker og e-bøker

    • Eksklusive nyheter hver uke

    • Lytt og les offline

    • Kids Mode (barnevennlig visning)

    • Avslutt når du vil

    Det mest populære valget

    Unlimited

    For deg som vil lytte og lese ubegrenset.

    219 kr /måned

    14 dager gratis
    • Lytt så mye du vil

    • Over 900 000 bøker

    • Nye eksklusive bøker hver uke

    • Avslutt når du vil

    Benytt tilbud

    Family

    For deg som ønsker å dele historier med familien.

    Fra 289 kr /måned

    14 dager gratis
    • Lytt så mye du vil

    • Over 900 000 bøker

    • Nye eksklusive bøker hver uke

    • Avslutt når du vil

    Du + 1 familiemedlem2 kontoer

    289 kr /måned

    Benytt tilbud

    Premium

    For deg som lytter og leser ofte.

    189 kr /måned

    • Lytt opptil 50 timer per måned

    • Over 900 000 bøker

    • Nye eksklusive bøker hver uke

    • Avslutt når du vil

    Benytt tilbud

    Basic

    For deg som lytter og leser av og til.

    149 kr /måned

    • Lytt opp til 20 timer per måned

    • Over 900 000 bøker

    • Nye eksklusive bøker hver uke

    • Avslutt når du vil

    Benytt tilbud

    Lytt og les ubegrenset

    Kos deg med ubegrenset tilgang til mer enn 700 000 titler.

    • Lytt og les så mye du vil
    • Utforsk et stort bibliotek med fortellinger
    • Over 1500 serier på norsk
    • Ingen bindingstid, avslutt når du vil
    Benytt tilbud
    NO - Details page - Device banner - 894x1036
    Cover for Math for Machine Learning: Linear Algebra, Calculus, and Probability Explained