Fakta og dokumentar
Reinforcement Learning: A Practical Guide to Algorithms delves into the impactful world of reinforcement learning, a key branch of AI. Spanning over five decades, reinforcement learning has significantly advanced AI, offering solutions for planning, budgeting, and strategic decision-making. This book provides a comprehensive understanding of reinforcement learning, focusing on building smart models and agents that adapt to changing requirements.
We cover fundamental and advanced topics, including value-based methods like UCB, SARSA, and Q-learning, as well as function approximation techniques. Additionally, we explore artificial neural networks, LSTD, gradient methods, emphatic TD methods, average reward methods, and policy gradient methods.
With clear explanations, diagrams, and examples, this book ensures that readers can grasp and apply reinforcement learning algorithms to real-world problems effectively. By the end, you will have a solid foundation in both theoretical and practical aspects of reinforcement learning.
© 2025 Educohack Press (E-bok): 9789361525667
Utgivelsesdato
E-bok: 3. januar 2025
Tagger
Over 700 000 bøker
Eksklusive nyheter hver uke
Lytt og les offline
Kids Mode (barnevennlig visning)
Avslutt når du vil
For deg som vil lytte og lese ubegrenset.
1 konto
Ubegrenset lytting
Over 700 000 bøker
Nye eksklusive bøker hver uke
Avslutt når du vil
For deg som ønsker å dele historier med familien.
2-3 kontoer
Ubegrenset lytting
Over 700 000 bøker
Nye eksklusive bøker hver uke
Avslutt når du vil
2 kontoer
289 kr /månedFor deg som lytter og leser av og til.
1 konto
20 timer/måned
Over 700 000 bøker
Nye eksklusive bøker hver uke
Avslutt når du vil
Kos deg med ubegrenset tilgang til mer enn 700 000 titler.
Norsk
Norge