Transformers in Deep Learning Architecture: Definitive Reference for Developers and Engineers

Språk
Engelsk
Format
Kategori

Fakta og dokumentar

"Transformers in Deep Learning Architecture"

"Transformers in Deep Learning Architecture" presents a comprehensive and rigorous exploration of the transformer paradigm—the foundational architecture that has revolutionized modern artificial intelligence. The book opens by situating transformers within the historical context of neural sequence models, methodically tracing their evolution from recurrent neural networks to the self-attention mechanisms that address their predecessor’s limitations. Early chapters lay a strong mathematical and conceptual foundation, introducing key terminology, theoretical principles, and detailed comparisons with alternative architectures to prepare readers for a deep technical dive.

At its core, the book delivers an in-depth analysis of the architectural details and operational intricacies that underpin transformer models. Subsequent chapters dissect the encoder-decoder framework, decompose self-attention and multi-head attention mechanisms, and discuss design choices such as positional encodings, feedforward networks, normalization strategies, and scaling laws. Readers also encounter a nuanced treatment of advanced attention variants—including efficient, sparse, and cross-modal extensions—along with proven paradigms for pretraining, transfer learning, and domain adaptation. Rich case studies illustrate the extraordinary performance of transformers in natural language processing, vision, audio, and multimodal tasks, highlighting both established applications and emerging frontiers.

Beyond technical mastery, the book addresses the practical dimensions and responsible deployment of large transformer models. It guides practitioners through scalable training, distributed modernization, and infrastructure optimization, while confronting contemporary challenges in interpretability, robustness, ethics, and privacy. The final chapters forecast the transformative future of the field with discussions on long-context modeling, symbolic integration, neuromorphic and quantum-inspired approaches, and the profound societal implications of widespread transformer adoption. Altogether, this volume stands as both an authoritative reference and a visionary roadmap for researchers and engineers working at the cutting edge of deep learning.

© 2025 HiTeX Press (E-bok): 6610000817047

Utgivelsesdato

E-bok: 28. mai 2025

Tagger

    Andre liker også ...

    Derfor vil du elske Storytel:

    • Over 900 000 lydbøker og e-bøker

    • Eksklusive nyheter hver uke

    • Lytt og les offline

    • Kids Mode (barnevennlig visning)

    • Avslutt når du vil

    Det mest populære valget

    Unlimited

    For deg som vil lytte og lese ubegrenset.

    219 kr /måned

    • Lytt så mye du vil

    • Over 900 000 bøker

    • Nye eksklusive bøker hver uke

    • Avslutt når du vil

    Benytt tilbud

    Premium

    For deg som lytter og leser ofte.

    189 kr /måned

    • Lytt opptil 50 timer per måned

    • Over 900 000 bøker

    • Nye eksklusive bøker hver uke

    • Avslutt når du vil

    Benytt tilbud

    Family

    For deg som ønsker å dele historier med familien.

    Fra 289 kr /måned

    • Lytt så mye du vil

    • Over 900 000 bøker

    • Nye eksklusive bøker hver uke

    • Avslutt når du vil

    Du + 1 familiemedlem2 kontoer

    289 kr /måned

    Benytt tilbud

    Basic

    For deg som lytter og leser av og til.

    149 kr /måned

    • Lytt opp til 20 timer per måned

    • Over 900 000 bøker

    • Nye eksklusive bøker hver uke

    • Avslutt når du vil

    Benytt tilbud

    Få 50 % rabatt i 3 måneder 💰📚

    Kos deg med ubegrenset tilgang til mer enn 900 000 titler.

    • Lytt og les så mye du vil
    • Eksklusive nyheter hver uke
    • Utforsk et stort bibliotek med fortellinger
    • Over 1500 serier på norsk
    • Ingen bindingstid, avslutt når du vil
    Benytt tilbud
    NO - Details page - Device banner - 894x1036
    Cover for Transformers in Deep Learning Architecture: Definitive Reference for Developers and Engineers