Listen and read

Step into an infinite world of stories

  • Read and listen as much as you want
  • Over 950 000 titles
  • Exclusive titles + Storytel Originals
  • Easy to cancel anytime
Try now
image.devices-Singapore 2x
Cover for TVM: Compiler Infrastructure for Deep Learning Optimization: The Complete Guide for Developers and Engineers

TVM: Compiler Infrastructure for Deep Learning Optimization: The Complete Guide for Developers and Engineers

Language
English
Format
Category

Non-Fiction

"TVM: Compiler Infrastructure for Deep Learning Optimization"

"TVM: Compiler Infrastructure for Deep Learning Optimization" delivers a comprehensive exploration of the principles, architecture, and cutting-edge techniques underlying TVM—a pioneering open-source compiler stack designed to optimize and deploy deep learning models across a diverse range of hardware backends. Beginning with an incisive overview of why traditional compilers fall short for deep learning workloads, the book guides readers through key foundations such as computational graph abstractions, intermediate representations, and performance-driven compilation strategies that empower model portability and efficiency.

The text meticulously details TVM’s layered system architecture, covering components such as the Relay high-level IR, the tensor expression language and scheduling primitives, as well as framework integration and extensibility for custom operators and hardware targets. Advanced chapters delve into specialized topics including graph transformations, backend-specific code generation for CPUs, GPUs, NPUs, and FPGAs, and fine-grained scheduling optimizations enabled by AutoTVM and meta-scheduling. Practical insights into memory management, automatic differentiation, and debugging tools illuminate the complexities of optimizing neural networks for both cloud-scale and edge deployments.

With dedicated sections addressing deployment pipelines, security, interoperability with serving and cloud-native infrastructure, and best practices for extending the ecosystem, this book serves as both an in-depth reference and a practical guide for engineers, researchers, and practitioners. The concluding chapters look toward the frontier of the field—discussing formal verification, privacy-preserving compilation, sparse workload optimization, and anticipated hardware trends—making this an indispensable resource for anyone involved in deep learning systems, compiler design, or hardware-software co-design.

© 2025 HiTeX Press (Ebook): 6610001024598

Release date

Ebook: 20 August 2025

Others also enjoyed ...

Features:

  • Over 950 000 titles

  • Kids Mode (child safe environment)

  • Download books for offline access

  • Cancel anytime

Most popular

Unlimited

For those who want to listen and read without limits.

S$12.98 /month

3 days free
  • Unlimited listening

  • Cancel anytime

Try now

Unlimited Bi-yearly

For those who want to listen and read without limits.

S$69 /6 months

14 days free
Save 11%
  • Unlimited listening

  • Cancel anytime

Try now

Unlimited Yearly

For those who want to listen and read without limits.

S$119 /year

14 days free
Save 24%
  • Unlimited listening

  • Cancel anytime

Try now

Family

For those who want to share stories with family and friends.

Starting at S$14.90 /month

  • Unlimited listening

  • Cancel anytime

You + 1 family member2 accounts

S$14.90 /month

Try now