Step into an infinite world of stories
Non-fiction
Ensemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy.
Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques – bagging, random forest, and boosting – then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how to improve the performance of your ensemble models.
By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples.
© 2018 Packt Publishing (Ebook): 9781788629171
Release date
Ebook: July 27, 2018
Listen and read without limits
800 000+ stories in 40 languages
Kids Mode (child-safe environment)
Cancel anytime
Listen and read as much as you want
1 account
Unlimited Access
Offline Mode
Kids Mode
Cancel anytime
English
International
