Listen and read

Step into an infinite world of stories

  • Read and listen as much as you want
  • Over 1 million titles
  • Exclusive titles + Storytel Originals
  • 7 days free trial, then €9.99/month
  • Easy to cancel anytime
Subscribe Now
Details page - Device banner - 894x1036
Cover for Hands-On Neuroevolution with Python: Build high-performing artificial neural network architectures using neuroevolution-based algorithms

Hands-On Neuroevolution with Python: Build high-performing artificial neural network architectures using neuroevolution-based algorithms

Language
English
Format
Category

Non-fiction

Increase the performance of various neural network architectures using NEAT, HyperNEAT, ES-HyperNEAT, Novelty Search, SAFE, and deep neuroevolution

Key Features

• Implement neuroevolution algorithms to improve the performance of neural network architectures

• Understand evolutionary algorithms and neuroevolution methods with real-world examples

• Learn essential neuroevolution concepts and how they are used in domains including games, robotics, and simulations

Book Description

Neuroevolution is a form of artificial intelligence learning that uses evolutionary algorithms to simplify the process of solving complex tasks in domains such as games, robotics, and the simulation of natural processes. This book will give you comprehensive insights into essential neuroevolution concepts and equip you with the skills you need to apply neuroevolution-based algorithms to solve practical, real-world problems.

You'll start with learning the key neuroevolution concepts and methods by writing code with Python. You'll also get hands-on experience with popular Python libraries and cover examples of classical reinforcement learning, path planning for autonomous agents, and developing agents to autonomously play Atari games. Next, you'll learn to solve common and not-so-common challenges in natural computing using neuroevolution-based algorithms. Later, you'll understand how to apply neuroevolution strategies to existing neural network designs to improve training and inference performance. Finally, you'll gain clear insights into the topology of neural networks and how neuroevolution allows you to develop complex networks, starting with simple ones.

By the end of this book, you will not only have explored existing neuroevolution-based algorithms, but also have the skills you need to apply them in your research and work assignments.

What you will learn

• Discover the most popular neuroevolution algorithms – NEAT, HyperNEAT, and ES-HyperNEAT

• Explore how to implement neuroevolution-based algorithms in Python

• Get up to speed with advanced visualization tools to examine evolved neural network graphs

• Understand how to examine the results of experiments and analyze algorithm performance

• Delve into neuroevolution techniques to improve the performance of existing methods

• Apply deep neuroevolution to develop agents for playing Atari games

Who this book is for

This book is for machine learning practitioners, deep learning researchers, and AI enthusiasts who are looking to implement neuroevolution algorithms from scratch. Working knowledge of the Python programming language and basic knowledge of deep learning and neural networks are mandatory.

© 2019 Packt Publishing (Ebook): 9781838822002

Release date

Ebook: December 24, 2019

Others also enjoyed ...

This is why you’ll love Storytel

  • Listen and read without limits

  • 800 000+ stories in 40 languages

  • Kids Mode (child-safe environment)

  • Cancel anytime

Unlimited stories, anytime

Unlimited

Listen and read as much as you want

9.99 € /month

7 days free
  • Offline Mode

  • Kids Mode

  • Cancel anytime

Try now