Step into an infinite world of stories
Non-fiction
"The Kubeflow Handbook: Streamlining Machine Learning on Kubernetes" is a comprehensive guide tailored for individuals seeking to harness the power of Kubeflow within the Kubernetes ecosystem. Written by an expert in computer science and software engineering, this book delves deep into the essential components and processes that make Kubeflow an invaluable tool for managing machine learning workflows. From its architecture to practical applications across various industries, readers will be equipped with the knowledge and skills necessary to deploy, scale, secure, and optimize machine learning models efficiently.
The handbook is meticulously structured to take readers from foundational concepts to advanced techniques, ensuring a thorough understanding of topics like Kubeflow Pipelines, model training and tuning, and serving and monitoring models. It also emphasizes the importance of security, compliance, and scalability, providing best practices and strategies to address the challenges of machine learning in production environments. With real-world case studies and step-by-step guidance, this book is an indispensable resource for data scientists, engineers, and IT professionals looking to elevate their machine learning initiatives using Kubeflow.
© 2025 HiTeX Press (Ebook): 6610000698196
Release date
Ebook: January 5, 2025
Listen and read without limits
800 000+ stories in 40 languages
Kids Mode (child-safe environment)
Cancel anytime
Listen and read as much as you want
1 account
Unlimited Access
Offline Mode
Kids Mode
Cancel anytime
English
International