Escucha y lee

Descubre un mundo infinito de historias

  • Lee y escucha todo lo que quieras
  • Más de 500 000 títulos
  • Títulos exclusivos + Storytel Originals
  • 14 días de prueba gratis, luego $24,900 COP/al mes
  • Cancela cuando quieras
Descarga la app
CO -Device Banner Block 894x1036

Building Neo4j-Powered Applications with LLMs: Create LLM-driven search and recommendations applications with Haystack, LangChain4j, and Spring AI

Idioma
Inglés
Format
Categoría

No ficción

Embark on an expert-led journey into building LLM-powered applications using Retrieval-Augmented Generation (RAG) and Neo4j knowledge graphs. Written by Ravindranatha Anthapu, Principal Consultant at Neo4j, and Siddhant Agrawal, a Google Developer Expert in GenAI, this comprehensive guide is your starting point for exploring alternatives to LangChain, covering frameworks such as Haystack, Spring AI, and LangChain4j.

As LLMs (large language models) reshape how businesses interact with customers, this book helps you develop intelligent applications using RAG architecture and knowledge graphs, with a strong focus on overcoming one of AI’s most persistent challenges—mitigating hallucinations. You'll learn how to model and construct Neo4j knowledge graphs with Cypher to enhance the accuracy and relevance of LLM responses.

Through real-world use cases like vector-powered search and personalized recommendations, the authors help you build hands-on experience with Neo4j GenAI integrations across Haystack and Spring AI. With access to a companion GitHub repository, you’ll work through code-heavy examples to confidently build and deploy GenAI apps on Google Cloud.

By the end of this book, you’ll have the skills to ground LLMs with RAG and Neo4j, optimize graph performance, and strategically select the right cloud platform for your GenAI applications.

© 2025 Packt Publishing (eBook ): 9781836206224

Fecha de lanzamiento

eBook : 20 de junio de 2025