Escucha y lee

Descubre un mundo infinito de historias

  • Lee y escucha todo lo que quieras
  • Más de 500 000 títulos
  • Títulos exclusivos + Storytel Originals
  • 14 días de prueba gratis, luego $24,900 COP/al mes
  • Cancela cuando quieras
Descarga la app
CO -Device Banner Block 894x1036
Cover for Multi-LLM Agent Collaborative Intelligence: The Path to Artificial General Intelligence

Multi-LLM Agent Collaborative Intelligence: The Path to Artificial General Intelligence

Colecciones

1 de 68

Idioma
Inglés
Formato
Categoría

No ficción

Today's large language models excel at pattern recall yet falter on long-range planning, self-critique, context loss, and the tendency of maximum-likelihood training to reward popularity over quality. MACI offers a promising route to AGI by orchestrating specialized LLM agents through explicit protocols rather than enlarging a single model. Several modules remedy complementary weaknesses: adversarial-collaborative debate surfaces hidden assumptions; critical-reading rubrics filter incoherent arguments; information-theoretic signals steer dialogue quantitatively; transactional memory enables reliable long-horizon execution; and a dual-agent ethical court adjudicates outputs. Crucially, MACI also modulates linguistic behavior, tuning each agent's contentiousness and emotional tone, so the collective explores ideas from contrasting, affect-aware perspectives before converging.

Fourteen aphorisms distill the framework's philosophy, including "Intelligence emerges from regulated collaboration, not isolated brilliance" and "Exploration must remain in tension with exploitation." Across healthcare diagnosis, investment support, scheduling, supply-chain management, and news-bias mitigation, MACI ensembles deliver significant improvements in reasoning depth, planning horizon, and reliability compared with similar-sized single models. By uniting structured debate, information-theoretic coordination, persistent memory, affect-aware discourse, and deliberative ethics, MACI demonstrates that rigorously validated multi-agent collaboration provides a practical, interpretable path toward robust general intelligence.

© 2025 ACM Books (Ebook): 9798400731730

Fecha de lanzamiento

Ebook: 12 de diciembre de 2025