Tritt ein in eine Welt voller Geschichten
This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed.
Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof.
© 2011 Princeton University Press (E-Book): 9781400840571
Erscheinungsdatum
E-Book: 8. August 2011
Tags
Über 600.000 Titel
Lade Titel herunter mit dem Offline Modus
Exklusive Titel und Storytel Originals
Sicher für Kinder (Kindermodus)
Einfach jederzeit kündbar
Für alle, die unbegrenzt hören und lesen möchten.
1 Konto
Unbegrenzter Zugriff
Jederzeit kündbar
Wechsel zu Basic jederzeit möglich
Für alle, die gelegentlich hören und lesen.
1 Konto
20 Stunden/pro Monat
Jederzeit kündbar
Abo-Upgrade jederzeit möglich
Deutsch
Deutschland