Tritt ein in eine Welt voller Geschichten
This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric?
The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies that most Grassmannians are spectrally rigid to the first order. This is particularly important, for there are still few isospectrality results for positively curved spaces and these are the first such results for symmetric spaces of compact type of rank >1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces.
A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry.
© 2009 Princeton University Press (E-Book): 9781400826179
Erscheinungsdatum
E-Book: 10. Januar 2009
Über 600.000 Titel
Lade Titel herunter mit dem Offline Modus
Exklusive Titel und Storytel Originals
Sicher für Kinder (Kindermodus)
Einfach jederzeit kündbar
Für alle, die unbegrenzt hören und lesen möchten.
1 Konto
Unbegrenzter Zugriff
Jederzeit kündbar
Wechsel zu Basic jederzeit möglich
Für alle, die gelegentlich hören und lesen.
1 Konto
20 Stunden/pro Monat
Jederzeit kündbar
Abo-Upgrade jederzeit möglich
Deutsch
Deutschland