Tritt ein in eine Welt voller Geschichten
Erfolgreiche ML-Pipelines entwickeln und mit MLOps organisatorische Herausforderungen meistern
• Stellt DevOps-Konzepte vor, die die speziellen Anforderungen von ML-Anwendungen berücksichtigen
• Umfasst die Verwaltung, Bereitstellung, Skalierung und Überwachung von ML-Modellen im Unternehmensumfeld
• Für Data Scientists und Data Engineers, die nach besseren Strategien für den produktiven Einsatz ihrer ML-Modelle suchen
Viele Machine-Learning-Modelle, die in Unternehmen entwickelt werden, schaffen es aufgrund von organisatorischen und technischen Hürden nicht in den produktiven Betrieb. Dieses Buch zeigt Ihnen, wie Sie erprobte MLOps-Strategien einsetzen, um eine erfolgreiche DevOps-Umgebung für Ihre ML-Modelle aufzubauen, sie kontinuierlich zu verbessern und langfristig zu warten. Das Buch erläutert MLOps-Schlüsselkonzepte, mit denen Data Scientists und Data Engineers ihre ML-Pipelines und -Workflows optimieren können. Anhand von Fallbeispielen, die auf zahlreichen MLOps-Anwendungen auf der ganzen Welt basieren, geben neun ML-Experten wertvolle Einblicke in die fünf Schritte des Modelllebenszyklus - Build, Preproduction, Deployment, Monitoring und Governance. Sie erfahren auf diese Weise, wie robuste MLOps-Prozesse umfassend in den ML-Produktworkflow integriert werden können.
© 2021 O'Reilly (E-Book): 9783960105817
Übersetzer: Marcus Fraaß
Erscheinungsdatum
E-Book: 26. August 2021
Tags
Über 600.000 Titel
Lade Titel herunter mit dem Offline Modus
Exklusive Titel und Storytel Originals
Sicher für Kinder (Kindermodus)
Einfach jederzeit kündbar
Für alle, die unbegrenzt hören und lesen möchten.
1 Konto
Unbegrenzter Zugriff
Jederzeit kündbar
Wechsel zu Basic jederzeit möglich
Für alle, die gelegentlich hören und lesen.
1 Konto
20 Stunden/pro Monat
Jederzeit kündbar
Abo-Upgrade jederzeit möglich
Deutsch
Deutschland