Écouter et lire

Entrez dans un monde infini d'histoires

  • Lire et écouter autant que vous le voulez
  • Plus d'un million de titres
  • Titres exclusifs + créations originales Storytel
  • 14 jours d'essai gratuit, puis 9,99 € par mois
  • Annulation facile à tout moment
Essayer gratuitement
Details page - Device banner - 894x1036

Machine Learning System Design for Beginners: Building Machine Learning Systems. A Beginner's Guide to Design and Implementation

Durée
3H 6min
Langues
Anglais
Format
Catégorie

Documents et essais

Designing and building machine learning (ML) systems can seem daunting for beginners, but understanding the foundational steps and principles can simplify the process. At its core, ML system design involves a series of well-defined steps that guide the transformation of raw data into valuable insights through predictive models. Here’s a beginner’s guide to understanding and implementing these steps effectively.

The first step in designing an ML system is problem definition. Clearly defining the problem you aim to solve is crucial. This involves understanding the business context, identifying the goals, and determining the type of problem—whether it is classification, regression, clustering, or another ML task. A well-defined problem ensures that the subsequent steps are aligned with the desired outcomes.

Once the problem is defined, the next step is data collection and preprocessing. Data is the backbone of any ML system, and its quality significantly impacts the performance of the models. Collect data from various sources and ensure it is relevant to the problem. Data preprocessing involves cleaning the data to handle missing values, removing duplicates, and normalizing the data. It also includes feature engineering, which involves selecting, modifying, or creating new features that enhance the predictive power of the model.

Finally, the deployment and monitoring phase ensures that the ML model is operational and continues to perform well over time. Deploy the model to a production environment where it can make real-time predictions or be used in batch processing. Implement monitoring systems to track the model’s performance and detect any drift in data distribution that might require retraining the model. Regularly update the model with new data to maintain its accuracy and relevance.

© 2024 James Ferry (Livre audio ): 9798882443640

Date de sortie

Livre audio : 9 juillet 2024

Mots-clés

    D'autres ont également apprécié ...

    L’offre Storytel :

    • Accès à la bibliothèque complète

    • Mode enfant

    • Annulez à tout moment

    15 heures

    Pour accompagner vos loisirs

    9.99€ /mois
    30 jours gratuits
    • 1 compte

    • 15 heures/mois

    Essayer maintenant

    30 heures

    Pour vos trajets quotidiens

    14.99€ /mois
    30 jours gratuits
    • 1 compte

    • 30 heures/mois

    Essayer maintenant

    45 heures

    Pour écouter tous les jours

    17.99€ /mois
    30 jours gratuits
    • 1 compte

    • 45 heures/mois

    Essayer maintenant