격이 다른 오디오북 생활을 경험해보세요!
논픽션
Ways to combat retraining depend on the algorithm and consist of the correct values of the trainer's met parameters. In practice, model estimation is not performed on the same input data that was used to train the model. Divide 10-20% of all available data into a separate set and call it a set for evaluation. We will bring the other 10-20% into the set for ratification, and 60-80% of the remaining ones will be given to the trainer. The principle of data sharing depends on the data and the task. Random sampling is often a good method if inputs are independent of each other, and there is no strong imbalance between the number of positive and negative entries.
The intuitive analogy here is the same as with university studies: the teacher solves some problems with students in pairs and gives other’s similar tasks in the exam. What is important here (both in teaching students and models) is that these tasks are varied, and students cannot simply memorize the answers, and those who have mastered the material (similar tasks) will be able to repeat the thought process and answer correctly.
In machine learning, we split into data two sets: we will use the evaluation set to evaluate each model we train, using different approaches, algorithms, and model types to select the best one. That is, for each model, we will have two precision values - precision on the training dataset and precision on the evaluation dataset. It is normal for the former to be higher than the second, but not significantly. A big difference indicates retraining.
© 2024 MS Publishing LLC (오디오북 ): 9798882462382
출시일
오디오북 : 2024년 7월 12일
태그
국내 유일 해리포터 시리즈 오디오북
5만권이상의 영어/한국어 오디오북
키즈 모드(어린이 안전 환경)
월정액 무제한 청취
언제든 취소 및 해지 가능
오프라인 액세스를 위한 도서 다운로드
친구 또는 가족과 함께 오디오북을 즐기고 싶은 분들을 위해
2-3 계정
무제한 액세스
2-3 계정
무제한 청취
언제든 해지하실 수 있어요
2 계정
17900 원 /월한국어
대한민국