오디오북 라이프의 시작

격이 다른 오디오북 생활을 경험해보세요!

  • 언제든 손쉽게 구독해지 가능
  • 월정액 11900원 부터
  • 무제한 청취
  • 총 5만권 이상의 영/한 오디오북
  • 온가족을 위한 다양한 오디오북
지금 바로 시작해보세요!
kr all devices
Cover for PySpark Cookbook: Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python

PySpark Cookbook: Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python

언어학습
영어
형식
컬렉션

논픽션

Combine the power of Apache Spark and Python to build effective big data applications

Key FeaturesPerform effective data processing, machine learning, and analytics using PySparkOvercome challenges in developing and deploying Spark solutions using PythonExplore recipes for efficiently combining Python and Apache Spark to process dataBook Description

Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. The PySpark Cookbook presents effective and time-saving recipes for leveraging the power of Python and putting it to use in the Spark ecosystem.

You’ll start by learning the Apache Spark architecture and how to set up a Python environment for Spark. You’ll then get familiar with the modules available in PySpark and start using them effortlessly. In addition to this, you’ll discover how to abstract data with RDDs and DataFrames, and understand the streaming capabilities of PySpark. You’ll then move on to using ML and MLlib in order to solve any problems related to the machine learning capabilities of PySpark and use GraphFrames to solve graph-processing problems. Finally, you will explore how to deploy your applications to the cloud using the spark-submit command.

By the end of this book, you will be able to use the Python API for Apache Spark to solve any problems associated with building data-intensive applications.

What you will learnConfigure a local instance of PySpark in a virtual environment Install and configure Jupyter in local and multi-node environmentsCreate DataFrames from JSON and a dictionary using pyspark.sqlExplore regression and clustering models available in the ML moduleUse DataFrames to transform data used for modelingConnect to PubNub and perform aggregations on streamsWho this book is for

The PySpark Cookbook is for you if you are a Python developer looking for hands-on recipes for using the Apache Spark 2.x ecosystem in the best possible way. A thorough understanding of Python (and some familiarity with Spark) will help you get the best out of the book.

Denny Lee is a technology evangelist at Databricks. He is a hands-on data science engineer with 15+ years of experience. His key focuses are solving complex large-scale data problems—providing not only architectural direction but hands-on implementation of such systems. He has extensive experience of building greenfield teams as well as being a turnaround/change catalyst. Prior to joining Databricks, he was a senior director of data science engineering at Concur and was part of the incubation team that built Hadoop on Windows and Azure (currently known as HDInsight). Tomasz Drabas is a data scientist specializing in data mining, deep learning, machine learning, choice modeling, natural language processing, and operations research. He is the author of Learning PySpark and Practical Data Analysis Cookbook. He has a PhD from University of New South Wales, School of Aviation. His research areas are machine learning and choice modeling for airline revenue management.

© 2018 Packt Publishing (전자책): 9781788834254

출시일

전자책: 2018년 6월 29일

다른 사람들도 즐겼습니다 ...

언제 어디서나 스토리텔

  • 국내 유일 해리포터 시리즈 오디오북

  • 5만권이상의 영어/한국어 오디오북

  • 키즈 모드(어린이 안전 환경)

  • 월정액 무제한 청취

  • 언제든 취소 및 해지 가능

  • 오프라인 액세스를 위한 도서 다운로드

인기

스토리텔 언리미티드

5만권 이상의 영어, 한국어 오디오북을 무제한 들어보세요

11900 원 /월

  • 사용자 1인

  • 무제한 청취

  • 언제든 해지하실 수 있어요

지금 바로 시작하기

패밀리

친구 또는 가족과 함께 오디오북을 즐기고 싶은 분들을 위해

매달 17900 원 원 부터

  • 2-3 계정

  • 무제한 청취

  • 언제든 해지하실 수 있어요

본인 + 1 가족 구성원2 개 계정

17900 원 /월

지금 바로 시작하기