ฟังและอ่าน

ก้าวเข้าสู่โลกแห่งเรื่องราวอันไม่มีที่สิ้นสุด

  • อ่านและฟังได้มากเท่าที่คุณต้องการ
  • มากกว่า 1 ล้านชื่อ
  • Storytel Originals ผลงานเฉพาะบน Storytel
  • 199บ./ด.
  • ยกเลิกได้ทุกเมื่อ
เริ่ม
Details page - Device banner - 894x1036
Cover for Automated Machine Learning with TPOT in Python: The Complete Guide for Developers and Engineers

Automated Machine Learning with TPOT in Python: The Complete Guide for Developers and Engineers

ภาษา
ภาษาอังกฤษ
รูปแบบ
คอลเลกชัน

นอนฟิกชั่น

"Automated Machine Learning with TPOT in Python"

Harnessing the full potential of machine learning often requires intricate expertise, iterative model tuning, and laborious pipeline engineering. "Automated Machine Learning with TPOT in Python" presents a comprehensive, practical guide to automating these demanding tasks with TPOT, one of the leading open-source AutoML frameworks in the Python ecosystem. Opening with the motivation, theory, and evolution of AutoML, the book demystifies key concepts like automated model selection, hyperparameter optimization, and sophisticated pipeline composition, while offering crucial comparisons among prominent AutoML libraries and their real-world impact.

The text delves deeply into the inner workings of TPOT—including its philosophy, architectural modularity, and pioneering use of genetic programming for search and optimization—revealing how users can write, extend, and manage automated workflows tailored to their needs. Readers are skillfully guided through robust environment setup, best practices in data preprocessing, advanced pipeline optimization, and domain-driven customization, ensuring both reliability and reproducibility in projects of any scale. With dedicated chapters on pipeline interpretation, export, and integration, the book equips practitioners with the tools to transition smoothly from experimental design to production deployment, while thoughtfully addressing explainability and compliance for regulated environments.

Balancing technical rigor with practical application, the book features advanced use cases and sector-specific case studies spanning bioinformatics, energy, finance, IoT, retail, and healthcare. Through hands-on examples and lessons learned from real-world deployments, readers gain insights into scaling AutoML with distributed and cloud-native solutions, integrating TPOT into modern MLOps pipelines, and stewarding deployed models with strong governance. Whether you are a data scientist, engineer, or technical leader, this book serves as the definitive blueprint for accelerating machine learning innovation with intelligent automation.

© 2025 HexTeX Press (อีบุ๊ก): 6610001085704

วันเปิดตัว

อีบุ๊ก: 20 สิงหาคม 2568

แท็ก

    คนอื่นก็สนุก...

    ทุกที่ ทุกเวลากับ Storytel:

    • กว่า 500 000 รายการ

    • Kids Mode (เนื้อหาที่ปลอดภัยสำหรับเด็ก)

    • ดาวน์โหลดหนังสือสำหรับการเข้าถึงแบบออฟไลน์

    • ยกเลิกได้ตลอดเวลา

    ที่นิยมมากที่สุด

    Unlimited

    สำหรับผู้ที่ต้องการฟังและอ่านอย่างไม่จำกัด

    199 บ. /เดือน

    • 1 บัญชี

    • ยกเลิกได้ทุกเมื่อ

    เริ่ม

    Family

    สำหรับผู้ที่ต้องการแบ่งปันเรื่องราวกับครอบครัวและเพื่อน

    349 บ. /เดือน

    • ฟังได้ไม่จำกัด

    • ยกเลิกได้ทุกเมื่อ

    เริ่ม