ก้าวเข้าสู่โลกแห่งเรื่องราวอันไม่มีที่สิ้นสุด
นอนฟิกชั่น
In the rapidly evolving landscape of machine learning, the ability to accurately quantify uncertainty is pivotal. The book addresses this need by offering an in-depth exploration of Conformal Prediction, a cutting-edge framework to manage uncertainty in various ML applications. Learn how Conformal Prediction excels in calibrating classification models, produces well-calibrated prediction intervals for regression, and resolves challenges in time series forecasting and imbalanced data. Discover specialised applications of conformal prediction in cutting-edge domains like computer vision and NLP. Each chapter delves into specific aspects, offering hands-on insights and best practices for enhancing prediction reliability. The book concludes with a focus on multi-class classification nuances, providing expert-level proficiency to seamlessly integrate Conformal Prediction into diverse industries. With practical examples in Python using real-world datasets, expert insights, and open-source library applications, you will gain a solid understanding of this modern framework for uncertainty quantification. By the end of this book, you will be able to master Conformal Prediction in Python with a blend of theory and practical application, enabling you to confidently apply this powerful framework to quantify uncertainty in diverse fields.
© 2023 Packt Publishing (อีบุ๊ก ): 9781805120919
วันที่วางจำหน่าย
อีบุ๊ก : 20 ธันวาคม 2566
แท็ก
กว่า 500 000 รายการ
Kids Mode (เนื้อหาที่ปลอดภัยสำหรับเด็ก)
ดาวน์โหลดหนังสือสำหรับการเข้าถึงแบบออฟไลน์
ยกเลิกได้ตลอดเวลา
ภาษาไทย
ประเทศไทย