Listen and read

Step into an infinite world of stories

  • Read and listen as much as you want
  • Over 1 million titles
  • Exclusive titles + Storytel Originals
  • 7 days free trial, then €9.99/month
  • Easy to cancel anytime
Try for free
Details page - Device banner - 894x1036
Cover for Mastering Probabilistic Graphical Models with Python: Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python

Mastering Probabilistic Graphical Models with Python: Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python

Language
English
Format
Category

Non-fiction

Probabilistic Graphical Models is a technique in machine learning that uses the concepts of graph theory to compactly represent and optimally predict values in our data problems. In real world problems, it's often difficult to select the appropriate graphical model as well as the appropriate inference algorithm, which can make a huge difference in computation time and accuracy. Thus, it is crucial to know the working details of these algorithms.

This book starts with the basics of probability theory and graph theory, then goes on to discuss various models and inference algorithms. All the different types of models are discussed along with code examples to create and modify them, and also to run different inference algorithms on them. There is a complete chapter devoted to the most widely used networks Naive Bayes Model and Hidden Markov Models (HMMs). These models have been thoroughly discussed using real-world examples.

© 2015 Packt Publishing (Ebook): 9781784395216

Release date

Ebook: August 3, 2015

Others also enjoyed ...

This is why you’ll love Storytel

  • Listen and read without limits

  • 800 000+ stories in 40 languages

  • Kids Mode (child-safe environment)

  • Cancel anytime

Unlimited stories, anytime

Unlimited

Listen and read as much as you want

9.99 € /month

  • Offline Mode

  • Kids Mode

  • Cancel anytime

Try now