Слушайте и четете с 60% отстъпка 3 месеца

Открийте безкрайна вселена от истории

  • Над 500,000 заглавия на 6 езика
  • Детски режим - безопасна зона за деца
  • Нови книги всяка седмица и ексклузивни заглавия
  • Офлайн режим
Пробвайте Storytel
BG - Details page - Device banner - 894x1036
Cover for An Architecture for Fast and General Data Processing on Large Clusters

An Architecture for Fast and General Data Processing on Large Clusters

Поредици

1 от 67

Езици
Английски
Формат
Категория

Документални

The past few years have seen a major change in computing systems, as growing data volumes and stalling processor speeds require more and more applications to scale out to clusters. Today, a myriad data sources, from the Internet to business operations to scientific instruments, produce large and valuable data streams. However, the processing capabilities of single machines have not kept up with the size of data. As a result, organizations increasingly need to scale out their computations over clusters.

At the same time, the speed and sophistication required of data processing have grown. In addition to simple queries, complex algorithms like machine learning and graph analysis are becoming common. And in addition to batch processing, streaming analysis of real-time data is required to let organizations take timely action. Future computing platforms will need to not only scale out traditional workloads, but support these new applications too.

This book, a revised version of the 2014 ACM Dissertation Award winning dissertation, proposes an architecture for cluster computing systems that can tackle emerging data processing workloads at scale. Whereas early cluster computing systems, like MapReduce, handled batch processing, our architecture also enables streaming and interactive queries, while keeping MapReduce's scalability and fault tolerance. And whereas most deployed systems only support simple one-pass computations (e.g., SQL queries), ours also extends to the multi-pass algorithms required for complex analytics like machine learning. Finally, unlike the specialized systems proposed for some of these workloads, our architecture allows these computations to be combined, enabling rich new applications that intermix, for example, streaming and batch processing.

We achieve these results through a simple extension to MapReduce that adds primitives for data sharing, called Resilient Distributed Datasets (RDDs). We show that this is enough to capture a wide range of workloads. We implement RDDs in the open source Spark system, which we evaluate using synthetic and real workloads. Spark matches or exceeds the performance of specialized systems in many domains, while offering stronger fault tolerance properties and allowing these workloads to be combined. Finally, we examine the generality of RDDs from both a theoretical modeling perspective and a systems perspective.

This version of the dissertation makes corrections throughout the text and adds a new section on the evolution of Apache Spark in industry since 2014. In addition, editing, formatting, and links for the references have been added.

© 2016 ACM Books (Е-книга): 9781970001587

Дата на излизане

Е-книга: 1 май 2016 г.

Избери своя абонамент:

  • Над 500,000 заглавия на 6 езика

  • Нови книги всяка седмица и ексклузивни заглавия

  • Детски режим - безопасна зона за деца

  • Офлайн режим

Най-популярен

Unlimited

Най-добрият избор. Открийте хиляди незабравими истории.

8.69 € | 16.99 лв. /30 дни

60% отстъпка
  • Избирайте от хиляди заглавия

  • Слушайте и четете неограничено

  • Прекратете по всяко време

Пробвайте сега

Unlimited Годишен

33% отстъпка от месечния абонамент. Избирайте от хиляди заглавия.

69.53 € | 135.99 лв. /година

12 месеца на цената на 8
  • Избирайте от хиляди заглавия

  • Слушайте и четете неограничено

  • Прекратете по всяко време

Пробвайте 7 дни безплатно

Family 2 профила

Споделете историите със семейството или приятелите си.

12.78 € | 24.99 лв. /30 дни

  • Потопете се заедно в света на историите

  • Слушайте и четете неограничено

  • Прекратете по всяко време

Пробвайте 7 дни безплатно

Family 3 профила

Споделете историите със семейството или приятелите си.

14.99 € | 29.32 лв. /30 дни

  • Потопете се заедно в света на историите

  • Слушайте и четете неограничено

  • Прекратете по всяко време

Пробвайте 7 дни безплатно