Hören und Lesen

Tritt ein in eine Welt voller Geschichten

  • Mehr als 600.000 Hörbücher und E-Book
  • Jederzeit kündbar
  • Exklusive Titel und Originals
  • komfortabler Kinder-Modus
Abonniere jetzt
se-device-image-1200x1200
Cover for Interpretability and Explainability in AI Using Python

Interpretability and Explainability in AI Using Python

Sprachen
Englisch
Format
Kategorie

Sachbuch

Demystify AI Decisions and Master Interpretability and Explainability Today

Book Description

Interpretability in AI/ML refers to the ability to understand and explain how a model arrives at its predictions. It ensures that humans can follow the model's reasoning, making it easier to debug, validate, and trust.

Interpretability and Explainability in AI Using Python takes you on a structured journey through interpretability and explainability techniques for both white-box and black-box models.

You’ll start with foundational concepts in interpretable machine learning, exploring different model types and their transparency levels. As you progress, you’ll dive into post-hoc methods, feature effect analysis, anchors, and counterfactuals—powerful tools to decode complex models. The book also covers explainability in deep learning, including Neural Networks, Transformers, and Large Language Models (LLMs), equipping you with strategies to uncover decision-making patterns in AI systems.

Through hands-on Python examples, you’ll learn how to apply these techniques in real-world scenarios. By the end, you’ll be well-versed in choosing the right interpretability methods, implementing them efficiently, and ensuring AI models align with ethical and regulatory standards—giving you a competitive edge in the evolving AI landscape.

Table of Contents

1. Interpreting Interpretable Machine Learning 2. Model Types and Interpretability Techniques 3. Interpretability Taxonomy and Techniques 4. Feature Effects Analysis with Plots 5. Post-Hoc Methods 6. Anchors and Counterfactuals 7. Interpretability in Neural Networks 8. Explainable Neural Networks 9. Explainability in Transformers and Large Language Models 10. Explainability and Responsible AI

Index

© 2025 Orange Education Pvt Ltd (E-Book): 9789348107749

Erscheinungsdatum

E-Book: 15. April 2025

Anderen gefällt...

Wähle dein Abo-Modell

  • Über 600.000 Titel

  • Lade Titel herunter mit dem Offline Modus

  • Exklusive Titel und Storytel Originals

  • Sicher für Kinder (Kindermodus)

  • Einfach jederzeit kündbar

Am beliebtesten!

Unlimited

Für alle, die unbegrenzt hören und lesen möchten.

18.90 € /Monat
7 Tage kostenlos
  • 1 Konto

  • Unbegrenzter Zugriff

  • Jederzeit kündbar

  • Wechsel zu Basic jederzeit möglich

Jetzt ausprobieren

Basic

Für alle, die gelegentlich hören und lesen.

7.90 € /Monat
7 Tage kostenlos
  • 1 Konto

  • 20 Stunden/pro Monat

  • Jederzeit kündbar

  • Abo-Upgrade jederzeit möglich

Jetzt ausprobieren